首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical resistivity imaging has been used in coastal settings to characterize fresh submarine groundwater discharge and the position of the freshwater/salt-water interface because of the relation of bulk electrical conductivity to pore-fluid conductivity, which in turn is a function of salinity. Interpretation of tomograms for hydrologic processes is complicated by inversion artifacts, uncertainty associated with survey geometry limitations, measurement errors, and choice of regularization method. Variation of seawater over tidal cycles poses unique challenges for inversion. The capabilities and limitations of resistivity imaging are presented for characterizing the distribution of freshwater and saltwater beneath a beach. The experimental results provide new insight into fresh submarine groundwater discharge at Waquoit Bay National Estuarine Research Reserve, East Falmouth, Massachusetts (USA). Tomograms from the experimental data indicate that fresh submarine groundwater discharge may shut down at high tide, whereas temperature data indicate that the discharge continues throughout the tidal cycle. Sensitivity analysis and synthetic modeling provide insight into resolving power in the presence of a time-varying saline water layer. In general, vertical electrodes and cross-hole measurements improve the inversion results regardless of the tidal level, whereas the resolution of surface arrays is more sensitive to time-varying saline water layer.  相似文献   

2.
Dynamic variation in the saltwater–freshwater transition zone below a seafront beach in South Korea was investigated with long-term monitoring of the groundwater in relation to the precipitation, wave height, and tide. Correlation, spectral analysis, and regression analysis of monitoring data were performed to deduce the relationships between these factors. The general shape of the transition zone was affected by the seasonal groundwater levels, but temporary fluctuations were predominantly affected by local rising-groundwater-level events. The distinct increases in the groundwater level were closely related to the wave height. Different patterns of electrical conductivity (EC) change were detected in the shallow and deep zones, and these differences indicated that the transition zone was highly dynamic. The EC values at shallow depths were temporarily increased by the wave setup and tidal fluctuations during the rising-groundwater events, but the EC at greater depths was reduced by the seaward or downward movement of the relative freshwater. In exceptional cases, during extreme increases in the groundwater level resulting from seawater flooding, the rapid downward flow of the flooding saltwater through the well bore caused synchronous EC fluctuations at all depths.  相似文献   

3.
山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究   总被引:17,自引:0,他引:17  
建立了三维变密度对流弥散水质数学模型来研究山东省烟台夹河中、下游地区咸淡水界面的运移规律。以四面体为基本离散单元 ,推导出三维海水入侵变密度水质模型求解的数值方法 ,其中水流方程求解时运用了迦辽金有限单元法。溶质运移方程求解时运用了欧拉拉格朗日混合方法 ,将对流项与弥散项分离 ,用传统迦辽金有限元方法求解弥散项 ;采用自适应MOC MMOC法求解对流项 ,以消除人工过量和数值弥散。根据地下水的潮汐效应观测信息 ,确定了含水系统的海底延伸边界 ;利用该地区地下水水头及水质长观资料识别了模型的水文地质参数 ,探讨了夹河地区海水入侵的原因 :认为夹河下游地区滨海地带地下水过量开采是造成烟台地区海水入侵的主要原因。此外 ,海水随潮定期地倒灌进入夹河 ,通过局部岩性天窗侵入淡水含水层加剧了沿夹河河床两侧地下水的咸化。同时还预测了几种情况下地下水的水质演化趋势 ,为防止和减轻夹河地区海水入侵提供合理、科学的依据。  相似文献   

4.
准确确定咸淡水界面位置是评价咸水入侵范围的前提。对于咸淡水界面位置的确定,传统研究以水化学法和物探法为主。为克服单一使用传统方法造成的人力、物力和财力的大量浪费,以莱州湾西南岸广饶县小清河以南咸水入侵区为研究对象,在综合分析研究区地下水开采现状、水化学监测结果的基础上,选择3个典型断面,采用水化学法中的野外现场电导率法,快速判断咸淡水界面大致位置(某两眼监测井之间);再在一咸一淡的两眼监测井之间,采用高密度电阻率法快速、准确地确定咸淡水界面的空间分布。结果表明:该地区的地下水电导率若大于1.61 mS/cm,即可认为此处受到咸水入侵;咸淡水界面位置的视电阻率特征值为11~13 Ω·m,咸淡水界面附近咸水体呈舌状入侵并主要发生在地表以下13 m内的浅层地下水中。  相似文献   

5.
Heat transport in a coastal groundwater flow system near De Panne, Belgium   总被引:1,自引:1,他引:0  
Temperature distribution and heat transport are studied in a coastal aquifer at De Panne in the western Belgian coastal plain. Field observations include temperature profiles of groundwater in the dunes and temperature measurements at the water table in a profile on the shore. Freshwater–saltwater distribution is known from previous studies. These are used to constrain a density-dependent model simulating the freshwater–saltwater distribution and heat transport using the SEAWAT code. The yearly fluctuation of the groundwater temperature in the phreatic aquifer under the dunes, shore and sea, and the influence of a tidal inlet in the dunes are simulated. The observations show that seawater temperature variations determine the temperature variations on the shore whereas atmospheric temperature changes determine this in the dunes. Yearly temperature fluctuations imposed at the water table propagate mainly vertically in the aquifer with only limited lateral influence. Heat transport is mainly convection dominated. Thickness of the surficial zone is determined by the amplitude of the groundwater temperature at the water table and the groundwater flow. Establishment of a tidal inlet in the dunes results in asymmetric temperature profiles under and in the vicinity of it.  相似文献   

6.
The sea levels along the semi-arid South Texas coast are noted to have risen by 3–5 mm/year over the last five decades. Data from General Circulation Models (GCMs) indicate that this trend will continue in the 21st century with projected sea level rise in the order of 1.8–5.9 mm/year due to the melting of glaciers and thermal ocean expansion. Furthermore, the temperature in South Texas is projected to increase by as much as 4 °C by the end of the 21st century creating a greater stress on scarce water resources of the region. Increased groundwater use hinterland due to urbanization as well as rising sea levels due to climate change impact the freshwater-saltwater interface in coastal aquifers and threaten the sustainability of coastal communities that primarily rely on groundwater resources. The primary goal of this study was to develop an integrated decision support framework to assist land and water planners in coastal communities to assess the impacts of climate change and urbanization. More specifically, the developed system was used to address whether coastal side (primarily controlled by climate change) or landward side processes (controlled by both climate change and urbanization) had a greater control on the saltwater intrusion phenomenon. The decision support system integrates a sharp-interface model with information from GCMs and observed data and couples them to statistical and information-theoretic uncertainty analysis techniques. The developed decision support system is applied to study saltwater intrusion characteristics at a small coastal community near Corpus Christi, TX. The intrusion characteristics under various plausible climate and urbanization scenarios were evaluated with consideration given to uncertainty and variability of hydrogeologic parameters. The results of the study indicate that low levels of climate change have a greater impact on the freshwater-saltwater interface when the level of urbanization is low. However, the rate of inward intrusion of the saltwater wedge is controlled more so by urbanization effects than climate change. On a local (near coast) scale, the freshwater-saltwater interface was affected by groundwater production locations more so than the volume produced by the community. On a regional-scale, the sea level rise at the coast was noted to have limited impact on saltwater intrusion which was primarily controlled by freshwater influx from the hinterlands towards the coast. These results indicate that coastal communities must work proactively with planners from the up-dip areas to ensure adequate freshwater flows to the coast. Field monitoring of this parameter is clearly warranted. The concordance analysis indicated that input parameter sensitivity did not change across modeled scenarios indicating that future data collection and groundwater monitoring efforts should not be hampered by noted divergences in projected climate and urbanization patterns.  相似文献   

7.
Fort Morgan Peninsula is an attached portion of a dynamic barrier complex in the northern Gulf of Mexico and is a large tourist area that brings in a significant amount of revenue for Alabama. Many of the hotels and tourist attractions depend on the groundwater as their water supply. The over-withdrawal of groundwater and saltwater intrustion will have a negative impact on the ecology, tourism and economy if groundwater resources are not properly monitored and managed. In this study a calibrated groundwater flow model was used to analyze the sustainability of groundwater resources at Fort Morgan Peninsula. Detailed flow budgets were prepared to check the various components of inflow and outflow under different water use and climatic conditions. The results indicated the locations where groundwater was over-pumped and subjected to saltwater intrusion, or will be subjected to saltwater intrusion under a range of projected water use and climatic conditions.  相似文献   

8.
Sustainable management of groundwater resources is critical for viable development of semi-arid regions. Refugio County, TX, is predominantly a rural community that is in close proximity to two large urban areas of Corpus Christi and San Antonio. Large-scale water supply projects are being planned to export surplus water available in Refugio County to nearby growing cities. Being a coastal county with several sensitive bays and estuaries, these projects have caused concerns with regard to decreases in freshwater inflows to coastal bodies and raised the possibility of saltwater intrusion. A simulation model characterizing groundwater flow in the shallower unconfined and the deeper semi-confined formations of the Gulf coast aquifer was calibrated and evaluated. The model results were used in conjunction with a mathematical programming scheme to estimate maximum available groundwater in the county. Stakeholder concerns were incorporated as constraints, which included prevention of saltwater intrusion in the aquifer, limiting the amount of allowable drawdown in shallow aquifers, as well as maintaining current flow gradients especially near baseflow-dependent streams and rivers. For the conditions assumed in this study, the model results indicate that roughly 4.93 × 107 m3 of water can be extracted in a typical year. The management model was noted to be very sensitive to the imposed saltwater intrusion constraint.  相似文献   

9.
In the karstic regions of the Mediterranean coastal zones the groundwater discharge and its outcrops—the coastal and submarine springs—represent the most typical natural phenomena of littoral karst, the economic potential of which is significant. The case studies discussed in this paper concern the problems of freshwater tapping in karst coastal zones along the Mediterranean littoral. Owing to the geological and hydrogeological approach, the set problems and adopted solutions involve two most important tasks: (1) the regulation of groundwater flow in the tapping facilities and (2) the control system of saltwater encroachment in a larger protection zone, between the coast and the site of tapping facilities.  相似文献   

10.
海水入侵的实验研究   总被引:10,自引:0,他引:10  
在海岸含水层中,含较多盐分的海水向陆地方向入侵形成淡-咸水交界面,通常称为海水入侵界面。该界面的动态变化受气象、水文地质和人类活动等因素的影响,是海水入侵问题的主要研究内容。本文介绍了海水向含水层中入侵的室内实验研究,以着色海水和图像处理方法获得入侵界面的形态及其动态变化。实验方法先进,所得数据整体性强,精度高,而且观测方法对流场没有干扰,比传统的提取水样进行化验的方法更有效。实验中模拟了海洋潮汐条件,揭示了入侵界面在不同实验条件下的动态特征。应用数值模拟方法揭示了流场的特征。计算表明,流场分两个区———淡水区和咸水区,由入侵界面分开。淡水区的水流相对活跃,淡水由入侵界面以上区域渗出边界,在界面以上形成淡水通道。  相似文献   

11.
地下水流数值模型不仅是认识深部水动力场形成演化机制的有效工具,也是建立核素迁移数值模型的基础,因而是高放废物处置场选址和安全评价中重要的技术手段。高放废物深地质处置地下水流数值模拟方法较多,如何选择适当的方法也是值得关注的问题。针对高放废物深地质处置地下水流数值模拟技术展开研究,通过阅读大量国内外文献,文章系统阐述了目前常用的4 类地下水流数值模拟方法的研究进展、适用条件和实例应用;综述了深地质处置中常用的模型不确定性分析方法及研究成果,列表给出了适用于放射性废物地质处置的地下水流数值模拟软件及其在废物处置选择和安全评价中的应用。研究结果表明:等效连续介质模型适用于大区域、长序列、裂隙发育程度较高或较均匀的地区,该类模型方法成熟、所需的数据和参数易于获得,但是不能精确刻画裂隙介质中地下水的流动特征。离散裂隙网络模型适合解决处置场地、储罐尺度等需要精细刻画的地下水流问题,但由于需要大量裂隙及其连通性数据、相关参数等,该方法存在着工作量大、耗时多的缺点。双重介质模型主要用于解决区域尺度裂隙水流问题,但并不能表现出裂隙介质的各向异性、不连续性等特征,因而适用范围存在一定的限制。等效-离散耦合模型可以通过区域分解法对裂隙密度大的区域采用等效连续介质模型,对于裂隙密度较小的地区采用离散裂隙网络模型,从而更符合一般地质条件下裂隙渗流的特征,但也存在交换量难以确定、模型耦合技术问题。通过灵敏度分析,将不同敏感因子对模型敏感指标的影响程度进行排序,提高模型精度、减少参数不确定性分析的工作量。蒙特卡罗法是目前常用的一种模型不确定性方法,原理简单、易于实现。文章展望了数值模型在仿真性、不确定性分析、预测和多介质耦合等方面的研究前景。  相似文献   

12.
Saltwater intrusion into coastal freshwater aquifers is an ongoing problem that will continue to impact coastal freshwater resources as coastal populations increase. To effectively model saltwater intrusion, the impacts of increased salt content on fluid density must be accounted for to properly model saltwater/freshwater transition zones and sharp interfaces. We present a model for variable density fluid flow and solute transport where a conforming finite element method discretization with a locally conservative velocity post-processing method is used for the flow model and the transport equation is discretized using a variational multiscale stabilized conforming finite element method. This formulation provides a consistent velocity and performs well even in advection-dominated problems that can occur in saltwater intrusion modeling. The physical model is presented as well as the formulation of the numerical model and solution methods. The model is tested against several 2-D and 3-D numerical and experimental benchmark problems, and the results are presented to verify the code.  相似文献   

13.
 An early indication of groundwater contamination occurs when pollutant concentrations start to fluctuate and exceed background values of ambient fresh groundwater. An analysis of a characteristic situation of this type uses data from Israel's coastal phreatic granular aquifer. The pollutant is generally seawater, and the contamination process involves replacement of freshwater by encroaching sea- or other saltwater, a process augmented by human activity. The contamination process involves three stages: (1) groundwater composition remains relatively stable with small salinity content; (2) small salinity changes are perceptible with reversible fluctuations; and (3) salinity concentration increases at a sharply higher rate. The second stage is a useful early-indicator signal of contamination. Early-indicator signals of groundwater pollutant concentrations involve "minor" fluctuations in water chemistry at the advent of the contamination process. The intensity and magnitude of such a salinization/pollution process at any given location depends upon lithologic matrix, aquifer heterogeneity, and resultant flow domain characteristics, as well as contaminant properties. If such "signs" are detected at a sufficiently early stage, appropriate management steps may be taken to rectify further seawater and/or saltwater encroachment. Received: 23 July 1996 · Accepted: 25 June 1997  相似文献   

14.
A new methodology used on a large scale is reported by which short-term (≤1 yr) marsh accretion rates were measured in saltwater and brackish marshes and compared to first-time measurements made in freshwater marshes. The stable rare-earth elements (REE) dysprosium and samarium were used for soil horizon markers that were collected by a cryogenic field coring method and detected by instrumental neutron activation analysis (INAA). Accumulation in saltwater marshes for 6 months was estimated to be 0.76±0.26 cm (n=11) and accumulation for 1 year was 1.29±0.49 cm (n=7). Accumulation in brackish marshes for 6 months was 0.51±0.34 cm (n=6) and for 1 year, 0.84±0.32 cm (n=10). These data from saline and brackish environments can be compared to first-time measurements of accumulation in a freshwater marsh of 1.53±0.66 cm (n=8) for 6-month accumulation and 2.97±0.92 cm (n=11) for 1-year accumulation. The cryogenic REE-INAA method for sampling and measuring 6-month and 1-year accretion is nonpolluting, does not alter natural marsh soil processes, and is effective in salt, brackish, and freshwater marshes. Additionally, the marker is essentially immobile, long lasting in the soil profile, and inexpensive to buy, apply, and sample. INAA analysis of the cores is expensive and time-consuming, yet the REE-INAA method yields accretion data, especially in freshwater habitats, that are obtainable in no other way. A comparison between short-term accretion and the presence or absence of man-made canals showed no statistically significant differences of accretion along transects from 0- to 50-m distance into brackish and saltwater marshes (no freshwater transects were established). Sediment depositions measured at 50 m into fresh, brackish, and saltwater marshes from natural or man-made waterways showed no statistically significant differences of accretion within each habitat over a 6-month or a 1-year time period.  相似文献   

15.
开展地下水数值模拟研究是高放废物处置场地安全评价的重要组成部分,然而深地质处置介质类型的复杂性、基岩深部资料的相对匮乏性导致模拟结果存在不确定性,如何刻画深部地下水动力场并评估可能引起的风险已成为高放废物处置安全评价中重点关注的问题。在大量文献调研的基础上,综述了世界典型国家高放废物深地质处置场地的地下水数值模拟与不确定性分析应用,并归纳总结该领域研究经验,得到以下认识:(1)深地质处置场深部构造、裂隙的发育与展布决定了地下水循环条件,探究适用于基岩裂隙地区新的水文地质试验方法是提高地下水数值模型仿真性的基础;(2)不同尺度模型融合是解决深地质处置地下水模拟的有效技术方法,区域尺度多采用等效连续介质法,场地尺度使用等效连续多孔介质和离散裂隙网络耦合模型,处置库尺度使用离散裂隙网络方法,其次需重点关注未来大时间尺度下放射性核素在地质体中的迁移转化规律,模拟预测场址区域地下水环境长期循环演变对核素迁移的潜在影响;(3)考虑到不同的处置层主岩岩性以及在多介质中发生的THMC(温度场—渗流场—应力场—化学场)过程,目前国内外常用的地下水模拟软件有:Porflow、Modflow、GMS及MT3DMS等用于模拟孔隙或等效连续介质,Connectflow、Feflow及FracMan等用于模拟地下水和核素在结晶岩、花岗岩等裂隙中的迁移,TOUGH系列软件主要应用于双重介质的水流、溶质及热运移模拟;(4)指导开展有针对性的模型和参数的不确定性分析工作,减少投入工作量,提高模型精度,并可针对处置库长期演变、废物罐失效、极端降雨等多情景预测模拟,为处置库安全评价及设计提供基础数据支撑;(5)针对我国深地质处置地下水数值模拟研究现状,下一步应加强区域地质、水文地质、裂隙测量以及现场试验等相关的调查及监测工作,多介质耦合、多场耦合模拟及不确定性分析研究将会是未来的研究重点。  相似文献   

16.
Negative hydraulic barriers that intercept inflowing saltwater by pumping near the coast have been proposed as a corrective measure for seawater intrusion in cases where low heads must be maintained. The main disadvantage of these barriers is that they pump a significant proportion of freshwater, leading to contamination with saltwater at the well. To minimize such mixing, a double pumping barrier system with two extraction wells is proposed: an inland well to pump freshwater and a seawards well to pump saltwater. A three-dimensional variable density flow model is used to study the dynamics of the system. The system performs very efficiently as a remediation option in the early stages. Long-term performance requires a well-balanced design. If the pumping rate is high, drawdowns cause saltwater to flow along the aquifer bottom around the seawater well, contaminating the freshwater well. A low pumping rate at the seawards well leads to insufficient desalinization at the freshwater well. A critical pumping rate at the seawater well is defined as that which produces optimal desalinization at the freshwater well. Empirical expressions for the critical pumping rate and salt mass fraction are proposed. Although pumping with partially penetrating wells improves efficiency, the critical pumping rates remain unchanged.  相似文献   

17.
The evaluation of the accuracy or reasonableness of numerical models of groundwater flow is a complex task, due to the uncertainties in hydrodynamic properties and boundary conditions and the scarcity of good-quality field data. To assess model reliability, different calibration techniques are joined to evaluate the effects of different kinds of boundary conditions on the groundwater flow in a coastal multi-layered aquifer in southern Italy. In particular, both direct and indirect approaches for inverse modeling were joined through the calibration of one of the most uncertain parameters, namely the hydraulic conductivity of the karst deep hydrostratigraphic unit. The methodology proposed here, and applied to a real case study, confirmed that the selection of boundary conditions is among the most critical and difficult aspects of the characterization of a groundwater system for conceptual analysis or numerical simulation. The practical tests conducted in this study show that incorrect specification of boundary conditions prevents an acceptable match between the model response to the hydraulic stresses and the behavior of the natural system. Such effects have a negative impact on the applicability of numerical modeling to simulate groundwater dynamics in complex hydrogeological situations. This is particularly important for management of the aquifer system investigated in this work, which represents the only available freshwater resource of the study area, and is threatened by overexploitation and saltwater intrusion.  相似文献   

18.
The present study concerns the application of a numerical approach to describe the influence of anthropogenic modifications in surface flows (operation of a projected reservoir) on the freshwater-seawater relationships in a downstream coastal aquifer which has seasonal seawater intrusion problems (River Verde alluvial aquifer, Almuñécar, southern Spain). A steady-state finite element solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting sharp interface between fresh water and salt water was used to predict the regional behavior of the River Verde aquifer under actual surface flow conditions. The present model approximates, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann and open boundary conditions. A steady-state solution to this numerical approach has been shown to precisely calculate freshwater heads, saltwater thicknesses, and freshwater discharges along steeply sloping coasts. Hence, the adequate treatment and interpretation of the hydrogeological data which are available for the River Verde aquifer have been of main concern in satisfactorily applying the proposed numerical model. Present simulated conditions consider steady-state yearly averaged amounts of external supplies of fresh water in order to determine the influences of the projected Otívar reservoir on the further behavior of the River Verde coastal aquifer. When recharges occur at the coastline, essentially because of freshwater deficits due to groundwater overexploitation, a hypothesis of mixing for the freshwater-saltwater transition zone is made in order to still allow the model to continue calculating groundwater heads under the sea level, and, as a consequence, the resulting seawater intrusion and recharges of saltwater from the sea. Simulations show that a considerable advance in seawater intrusion would be expected in the coastal aquifer if current rates of groundwater pumping continue and a significant part of the runoff from the River Verde is channeled from the Otívar reservoir for irrigation purposes.  相似文献   

19.
Despite the broad impact and importance of saltwater intrusion in coastal aquifers, little research has been directed towards forecasting saltwater intrusion in areas where the source of saltwater is uncertain. Saline contamination in inland groundwater supplies is a concern for numerous communities in the southern US including the city of Deltona, Florida. Furthermore, conventional numerical tools for forecasting saltwater contamination are heavily dependent on reliable characterization of the physical characteristics of underlying aquifers, information that is often absent or challenging to obtain. To overcome these limitations, a reliable alternative data-driven model for forecasting salinity in a groundwater supply was developed for Deltona using the fast orthogonal search (FOS) method. FOS was applied on monthly water-demand data and corresponding chloride concentrations at water supply wells. Groundwater salinity measurements from Deltona water supply wells were applied to evaluate the forecasting capability and accuracy of the FOS model. Accurate and reliable groundwater salinity forecasting is necessary to support effective and sustainable coastal-water resource planning and management. The available (27) water supply wells for Deltona were randomly split into three test groups for the purposes of FOS model development and performance assessment. Based on four performance indices (RMSE, RSR, NSEC, and R), the FOS model proved to be a reliable and robust forecaster of groundwater salinity. FOS is relatively inexpensive to apply, is not based on rigorous physical characterization of the water supply aquifer, and yields reliable estimates of groundwater salinity in active water supply wells.  相似文献   

20.
Predicted changes in climate will lead to seawater intrusion in the Querença-Silves (QS) coastal aquifer (south Portugal) during the coming century if the current water-resource-management strategy is maintained. As for much of the Mediterranean, average rainfall is predicted to decrease along with increasing seasonal and inter-annual variability and there is a need to understand how these changes will affect the sustainable use of groundwater resources. A density-coupled flow and transport model of the QS was used to simulate an ensemble of climate, water-use and adaptation scenarios from 2010 to 2099 taking into account intra- and inter-annual variability in recharge and groundwater use. By considering several climate models, bias correction and recharge calculation methods, a degree of uncertainty was included. Changes in rainfall regimes will have an immediate effect on groundwater discharge; however, the effect on saltwater intrusion is attenuated by the freshwater–saltwater interfaces’ comparatively slow rate of movement. Comparing the effects of adaptation measures demonstrates that the extent of intrusion in the QS is controlled by the long-term water budget, as the effectiveness of both demand and supply oriented measures is proportional to the change in water budget, and that to maintain the current position, average groundwater discharge should be in the order of 50 × 106 m3 yr?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号