首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A review of climate geoengineering proposals   总被引:2,自引:0,他引:2  
Climate geoengineering proposals seek to rectify the current radiative imbalance via either (1) reducing incoming solar radiation (solar radiation management) or (2) removing CO2 from the atmosphere and transferring it to long-lived reservoirs (carbon dioxide removal). For each option, we discuss its effectiveness and potential side effects, also considering lifetime of effect, development and deployment timescale, reversibility, and failure risks. We present a detailed review that builds on earlier work by including the most recent literature, and is more extensive than previous comparative frameworks. Solar radiation management propsals are most effective but short-lived, whilst carbon dioxide removal measures gain effectiveness the longer they are pursued. Solar radiation management could restore the global radiative balance, but must be maintained to avoid abrupt warming, meanwhile ocean acidification and residual regional climate changes would still occur. Carbon dioxide removal involves less risk, and offers a way to return to a pre-industrial CO2 level and climate on a millennial timescale, but is potentially limited by the CO2 storage capacity of geological reservoirs. Geoengineering could complement mitigation, but it is not an alternative to it. We expand on the possible combinations of mitigation, carbon dioxide removal and solar radiation management that might be used to avoid dangerous climate change.  相似文献   

2.
CO2 capture, utilization, and storage (CCUS) technology is a rare option for the large-scale use of fossil fuels in a low-carbon way, which will definitely play a part in the journey towards carbon neutrality. Within the CCUS nexus, CCU is especially interesting because these processes will establish a new “atmosphere-to-atmosphere” carbon cycle and thus indirectly offer huge potential in carbon reduction. This study focuses on the new positioning of CCUS in the carbon neutrality scenario and aims to identify potential cutting-edge/disruptive CCU technologies that may find important application opportunities during the decarbonization of the energy and industrial system. To this end, direct air capture (DAC), flexible metal-framework materials (MOFs) for CO2 capture, integrated CO2 capture and conversion (ICCC), and electrocatalytic CO2 reduction (ECR) were selected, and their general introduction, the importance to carbon neutrality, and most up-to-date research progress are summarized.  相似文献   

3.
An evaluation of oceanic containment strategies for anthropogenic carbon dioxide is presented. Energy conservation is also addressed through an input hydrocarbon-fuel consumption function. The effectiveness of the proposed countermeasures is determined from atmospheric CO2 concentration predictions. A previous box model with a diffusive deep ocean is adapted and applied to the concept of fractional CO2 injection in 500 m deep waters. Next, the contributions of oceanic calcium carbonate sediment dissolution, and of deep seawater renewal, are included. Numerical results show that for CO2 direct removal measures to be effective, large fractions of anthropogenic carbon dioxide have to be processed. This point favors fuel pre-processing concepts. The global model also indicates that energy conservation, i.e. a hydrocarbon-fuel consumption slowdown, remains the most effective way to mitigate the greenhouse effect, because it offers mankind a substantial time delay to implement new energy production alternatives.  相似文献   

4.
Attaining deep greenhouse gas (GHG) emission reductions in industry in order to support a stringent climate change control target will be difficult without recourse to CO2 capture and storage (CCS). Using the insights from a long-term bottom-up energy systems model, and undertaking a sectoral assessment, we investigated the importance of CCS in the industrial sector. Under climate policy aimed at limiting atmospheric concentration of GHGs to 650 ppm CO2e, costs could increase fivefold when CCS is excluded from the portfolio of mitigation option measures in the industry sector as compared to when CCS is excluded in the power sector. This effect is driven largely by the lack of alternatives for deep emission reductions in industry. Our main policy conclusion is that a broader recognition of CCS in industrial applications in both current policy discussions and research, development, and demonstration funding programmes is justified. In recognition of the heterogeneity of the many types of industrial production processes, the size and location of industrial CO2 sources, the specific need for CCS-retrofitting, and the exposure of most industrial sectors to international trade, policies aimed at supporting CCS must distinguish between the different challenges faced by the power and industrial sectors.  相似文献   

5.
The need for atmospheric carbon dioxide(CO_2) reduction in the context of global warming is widely acknowledged by the global scientific community.Fossil fuel CO_2(CO_(2ff)) emissions occur mainly in cities,and can be monitored directly with radiocarbon(~(14) C).In this research,annual plants [Setaria viridis(L.) Beauv.] were collected from 26 sites in 2013 and2014 in the central urban district of Xi'an City.The △~(14)C content of the samples were analyzed using a 3 MV Accelerator Mass Spectrometer,and CO_(2ff) concentrations were calculated based on mass balance equations.The results showed that the CO_(2ff) mixing ratio ranged from 15.9 to 25.0 ppm(part per million,equivalent to μmol mol~(-1)),with an average of 20.5 ppm in 2013.The range of measured values became larger in 2014,from 13.9 ppm to 33.1 ppm,with an average of 23.5 ppm.The differences among the average CO_(2ff) concentrations between the central area and outer urban areas were not statistically significant.Although the year-to-year variation of the CO_(2ff) concentration was significant(P 0.01),there was a distinctly low CO_(2 ff) value observed in the northeast corner of the city.CO_(2 ff) emiissions from vehicle exhaust and residential sources appeared to be more significant than two thermal power plants,according to our observed CO_(2 ff) spatial distribution.The variation of pollution source transport recorded in our observations was likely controlled by southwesterly winds.These results could assist in the optimal placement of regional CO_2 monitoring stations,and benefit the local government in the implementation of efficient carbon emission reduction measures.  相似文献   

6.
It is important to improve estimates of large-scale carbon fluxes over the boreal forest because the responses of this biome to global change may influence the dynamics of atmospheric carbon dioxide in ways that may influence the magnitude of climate change. Two methods currently being used to estimate these fluxes are process-based modeling by terrestrial biosphere models (TBMs), and atmospheric inversions in which fluxes are derived from a set of observations on atmospheric CO2 concentrations via an atmospheric transport model. Inversions do not reveal information about processes and therefore do not allow for predictions of future fluxes, while the process-based flux estimates are not necessarily consistent with atmospheric observations of CO2. In this study we combine the two methods by using the fluxes from four TBMs as a priori fluxes for an atmospheric Bayesian Synthesis Inversion. By doing so we learn about both approaches. The results from the inversion indicate where the results of the TBMs disagree with the atmospheric observations of CO2, and where the results of the inversion are poorly constrained by atmospheric data, the process-based estimates determine the flux results. The analysis indicates that the TBMs are modeling the spring uptake of CO2 too early, and that the inversion shows large uncertainty and more dependence on the initial conditions over Europe and Boreal Asia than Boreal North America. This uncertainty is related to the scarcity of data over the continents, and as this problem is not likely to be solved in the near future, TBMs will need to be developed and improved, as they are likely the best option for understanding the impact of climate variability in these regions.  相似文献   

7.
The Yangtze River Delta (YRD), China’s main cultural and economic center, has become one of the most seriously polluted areas in the world with respect to nitrogen oxides (NOx), owing to its rapid industrialization and urbanization, as well as substantial coal consumption. On the basis of nitrogen dioxide (NO2) density data from ozone monitoring instrument (OMI) and ground-based observations, the effects of industrial fluctuations due to the financial crisis on local NO2 pollution were quantitatively assessed. The results were as follows. (1) A distinct V-shaped fluctuation of major industrial products, thermal generating capacity, electricity consumption, and tropospheric NO2 densities was associated with the global financial crisis from May 2007 to December 2009, with the largest anomalies 1.5 times more than standard deviations at the height of the crisis period from November 2008 to February 2009. (2) Among all industrial sectors, thermal power plants were mainly responsible for fluctuations in local NO2 pollution during the crisis period. Thermal generating capacity had its greatest decrease of 12.10% at the height of the crisis compared with that during November 2007–February 2008, leading to local tropospheric NO2 density decreasing by 16.97%. As the crisis appeased, thermal generating capacity increased by 29.63% from November 2009 to February 2010, and tropospheric NO2 densities correspondingly increased by 30.07%. (3) Among all industrial sectors in the YRD, the thermal power sector has the greatest coal consumption of about 65.96%. A decline in thermal power of about 10% can induce a decrease of about 30% in NOx emissions and NO2 densities, meaning that a relative small fluctuation in industrial production can lead to a large decrease in tropospheric NO2 densities over industrially developed areas like the YRD region. Since electricity is mainly obtained from local coal-burning thermal plants without NOx-processing equipment, installing NOx-removal devices for all thermal power plants is an important and feasible way of controlling local NOx pollution at present.  相似文献   

8.
A coupled general circulation model has been used to perform a set of experiments with high CO2 concentration (2, 4, 16 times the present day mean value). The experiments have been analyzed to study the response of the climate system to strong radiative forcing in terms of the processes involved in the adjustment at the ocean–atmosphere interface. The analysis of the experiments revealed a non-linear response of the mean state of the atmosphere and ocean to the increase in the carbon dioxide concentration. In the 16 × CO2 experiment the equilibrium at the ocean–atmosphere interface is characterized by an atmosphere with a shut off of the convective precipitation in the tropical Pacific sector, associated with air warmer than the ocean below. A cloud feedback mechanism is found to be involved in the increased stability of the troposphere. In this more stable condition the mean total precipitation is mainly due to large-scale moisture flux even in the tropics. In the equatorial Pacific Ocean the zonal temperature gradient of both surface and sub-surface waters is significantly smaller in the 16 × CO2 experiment than in the control experiment. The thermocline slope and the zonal wind stress decrease as well. When the CO2 concentration increases by about two and four times with respect to the control experiment there is an intensification of El Niño. On the other hand, in the experiment with 16 times the present-day value of CO2, the Tropical Pacific variability weakens, suggesting the possibility of the establishment of permanent warm conditions that look like the peak of El Niño.  相似文献   

9.
在“双碳”目标背景下,从国家层面到地方层面,区域、城市、行业企业都在制定和实施双碳目标行动计划。CO2模拟因其客观性和高时空分辨率等优势,在城市碳排放研究中深受重视。本研究以京津冀地区为研究区域,采用Picarro仪器高精度观测的2019—2020年CO2数据,利用WRF模式进行CO2传输模拟,分析了CO2浓度变化的季节特征,评估了模式在城区中心、城郊及背景3个观测站点的模拟效果,并对边界层高度及化石燃料碳排放等可能影响CO2浓度的因素进行了研究。3个观测站点分别为北京中国科学院大气物理研究所325 m气象塔观测站(北京站)、河北香河观测站(香河站)和上甸子区域本底观测站(上甸子站)。模拟结果表明:上甸子站优于香河站,香河站优于北京站,在冬季尤其明显;CO2浓度的高值区主要分布在城区、电厂和工业区,尤其是唐山、石家庄和邯郸地区,大量交通、工业排放导致CO2浓度明显上升,且高值区的范围在冬季最大;就日平均变化和日变化而言,边界层高度与CO2浓度存在相反变化趋势;3个站点的化石燃料碳排放(FFECO2)与近地面总CO2浓度存在正相关关系,冬春季的相关性高于夏秋季,且FFECO2的占比从大到小依次为北京站、香河站、上甸子站;CO2传输模拟的不确定性存在空间差异和季节变化。  相似文献   

10.
Empirical investigations have indicated that projections of future atmospheric carbon dioxide concentrations of a quality quite adequate for practical questions regarding the environmental threat of anthropogenic carbon dioxide emissions and its relationship to energy use policy could be made with the simple assumption that a constant fraction of these emissions would be retained by the atmosphere. By analysis of the structural behavior of equations describing the transfer of carbon and carbon dioxide between their several reservoirs we have been able to demonstrate that this characteristic can be explained to result from approximately linear behavior and exponentially growing carbon dioxide release rates, combined with fitting of carbon cycle model parameters to the last twenty years of observed atmospheric carbon dioxide growth. These conclusions are independent of the details of carbon cycle model structure for projections up to 100 years into the future as long as the growth in atmospheric carbon dioxide release rates is sufficiently high, of the order of 1.5% per annum or more, as referenced to p re-industrial (steady state) conditions. At low rates of growth, when the longer response times of the carbon cycling system become important, for most energy use projections the resultant CO2 induced climate changes are small and the uncertainties in predicted atmospheric carbon dioxide level are thus not important. A possible exception to this condition occurs for scenarios of future fossil fuel use rates designed to avoid atmospheric CO2 levels exceeding a chosen threshold. In this instance details of carbon cycle model structure could significantly affect conclusions that might be drawn concerning future energy use policies; however, it is possible that such a result stems from inappropriate specification of a criterion for an environmental threat, rather than from inherent inadequacy of current carbon cycle models. Recent carbon cycle model developments postulate transfer processes of carbon into the deep ocean, large carbon storage reservoir at rates much higher than in the models we have analysed. If the existence of such mechanisms is confirmed, and they are found to be sufficiently rapid and large, some of our conclusions regarding the use of the constant fractional retention assumption may have to be modified. Currently at the Gas Research Institute, 8600 West Bryn, Mawr Ave., Chicago, IL 60631, U.S.A.  相似文献   

11.
Sergio Pacca 《Climatic change》2007,84(3-4):281-294
Greenhouse gas (GHG) emissions from hydroelectric dams are often portrayed as nonexistent by the hydropower industry and have been largely ignored in global comparisons of different sources of electricity. However, the life cycle assessment (LCA) of any hydroelectric plant shows that GHG emissions occur at different phases of the power plant’s life. This work examines the role of decommissioning hydroelectric dams in greenhouse gas emissions. Accumulated sediments in reservoirs contain noticeable levels of carbon, which may be released to the atmosphere upon decommissioning of the dam. The rate of sediment accumulation and the sediment volume for six of the ten largest United States hydroelectric power plants is surveyed. The amount of sediments and the respective carbon content at the moment of dam decommissioning (100 years after construction) was estimated. The released carbon is partitioned into CO2 and CH4 emissions and converted to CO2 equivalent emissions using the global warming potential (GWP) method. The global warming effect (GWE) due to dam decommissioning is normalized to the total electricity produced over the lifetime of each power plant. The estimated GWE of the power plants range from 128–380 g of CO2eq./kWh when 11% of the total available sediment organic carbon (SOC) is mineralized and between 35 and 104 g of CO2eq./kWh when 3% of the total SOC is mineralized. Though these values are below emission factors for coal power plants (890 g of CO2eq./kWh), the amount of greenhouse gases emitted by the sediments upon dam decommissioning is a notable amount that should not be ignored and must be taken into account when considering construction and relicensing of hydroelectric dams.  相似文献   

12.
One way to reduce carbon dioxide (CO2) emissions to the atmosphere is to recover it from an energy conversion process (e.g. from stack gases) and to store it in an aquifer (a permeable, mainly sandy, underground layer). The main goal of this study was a preliminary evaluation of this kind of storage.Allowing for a large uncertainty in the geological properties, we arrived at the following tentative results. The average cost of disposal is $1.4 per ton CO2 stored. The enclosing layer of most aquifers seems impermeable enough to prevent the CO2 from rising to the surface within at least 10 000 years. The main technical uncertainty is whether the water in the reservoir can be pushed aside fast enough to prevent an intolerable pressure build-up in the reservoir.The disposal of CO2 in aquifers seems to be a feasible option in the light of existing geological knowledge. If it is a practical possibility, the opportunities are large and the costs appear to be relatively low. However, uncertainties remain in the technical sphere. These uncertainties have to be studied and dispelled before the disposal of CO2 in aquifers can be said to be called technically feasible.  相似文献   

13.
In the current study, we quantified changes in the growth and alkaloid content of wild poppy, (Papaver setigerum) as a function of recent and projected changes in global atmospheric carbon dioxide concentration, [CO2]. The experimental [CO2] values (300, 400, 500 and 600μmol mol?1) correspond roughly to the concentrations that existed during the middle of the twentieth century, the current concentration, and near and long-term projections for the current century (2050 and 2090), respectively. Additional carbon dioxide resulted in significant increases in leaf area and above ground biomass for P. setigerum at all [CO2] relative to the 300μmol mol?1 baseline. Reproductively, increasing [CO2] from 300 to 600μmol mol?1 increased the number of capsules, capsule weight and latex production by 3.6, 3.0 and 3.7×, respectively, on a per plant basis. Quantification of secondary compounds (i.e. those not involved in primary metabolism) included the alkaloids morphine, codeine, papaverine and noscapine. The amount of all alkaloids increased significantly on a per plant basis, with the greatest relative increase occurring with recent increases in atmospheric carbon dioxide (e.g. from 300 to 400μmol mol?1). Overall, these data suggest that as atmospheric [CO2] continues to increase, significant effects on the production of secondary plant compounds of pharmacological interest (i.e. opiates) could be expected.  相似文献   

14.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   

15.
Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16×CO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (??precipitation-wind paradox??). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales.  相似文献   

16.
Combining policies to remove carbon dioxide (CO2) from the atmosphere with policies to reduce emissions could decrease CO2 concentrations faster than possible via natural processes. We model the optimal selection of a dynamic portfolio of abatement, research and development (R&D), and negative emission policies under an exogenous CO2 constraint and with stochastic technological change. We find that near-term abatement is not sensitive to the availability of R&D policies, but the anticipated availability of negative emission strategies can reduce the near-term abatement optimally undertaken to meet 2°C temperature limits. Further, planning to deploy negative emission technologies shifts optimal R&D funding from ??carbon-free?? technologies into ??emission intensity?? technologies. Making negative emission strategies available enables an 80% reduction in the cost of keeping year 2100 CO2 concentrations near their current level. However, negative emission strategies are less important if the possibility of tipping points rules out using late-century net negative emissions to temporarily overshoot the CO2 constraint earlier in the century.  相似文献   

17.
Atmospheric CO2 concentrations can be reduced by storing carbon in vegetation. However, this lowers the concentration gradient between the atmosphere and other potential carbon reservoirs, such as the oceans, and thereby reduces the subsequent inherent rate of removal of CO2 from the atmosphere. Hence, storage of carbon in temporary reservoirs can reduce atmospheric CO2 concentrations in the short term, but if the carbon is released again, it will increase concentrations in the long term. It must, therefore, be considered when, or, indeed whether, to store carbon in vegetation sinks.To determine an optimal strategy, the exact nature of climate-change impacts needs to be considered first. Impacts can be mediated by:1. the direct and instantaneous effect of CO2 and its associated temperature;2. the rate of change in CO2 and its associated temperature;3. the cumulative effect of CO2 and its associated temperature.Carbon stored in permanently maintained vegetation sinks can lower atmospheric CO2 concentrations, but this can be done most effectively if sequestration occurs close to the time when atmospheric concentrations are to be lowered. Similarly, maximal rates of change can be most effectively reduced by carbon sequestration close to the time of anticipated maximal rates of change. For reducing impacts via cumulative forcing, however, early sink activity would be more effective than delayed activity.Temporary carbon stores would only be beneficial for climate change impacts related to the cumulative impact of CO2, but it could even worsen impacts mediated via the instantaneous effect of temperature or those related to the rate of change. Hence, the planting of trees is only beneficial in reducing climate-change impacts if the most serious impacts are those related to the cumulative effect of increased temperature. If other impacts are more serious, then the planting of trees would bring greater benefits if it is delayed until closer to the time when the most severe impacts are to be expected. However, if serious land degradation would result from deforestation, or from a failure to plant trees in the near future, then trees should still be planted in order to maximise the amount of carbon stored on land.  相似文献   

18.
We present and apply a simple bottom–up model for estimating non-energy use of fossil fuels and resulting CO2 (carbon dioxide) emissions. We apply this model for the year 2000: (1) to the world as a whole, (2) to the aggregate of Annex I countries and non-Annex I countries, and (3) to the ten non-Annex I countries with the highest consumption of fossil fuels for non-energy purposes. We find that worldwide non-energy use is equivalent to 1,670 ± 120 Mt (megatonnes) CO2 and leads to 700 ± 90 Mt CO2 emissions. Around 75% of non-energy use emissions is related to industrial processes. The remainder is attributed to the emission source categories of solvent and other product use, agriculture, and waste. Annex I countries account for 51% (360 ± 50 Mt CO2) and non-Annex I countries for 49% (340 ± 70 Mt CO2) of worldwide non-energy use emissions. Among non-Annex I countries, China is by far the largest emitter of non-energy use emissions (122 ± 18 Mt CO2). Our research deepens the understanding of non-energy use and related CO2 emissions in countries for which detailed emission inventories do not yet exist. Despite existing model uncertainties, we recommend NEAT-SIMP to inventory experts for preparing correct and complete non-energy use emission estimates for any country in the world.  相似文献   

19.
Variations in the deep-sea carbon reservoir have been invoked to explain the observed atmospheric carbon dioxide (CO2) changes during glacial-interglacial cycles. In order to distinguish between the quantity of organic matter remineralized in the deep-sea and that permanently removed into sediments, we compared the bulk- and organic carbon-accumulation rates in Holocene and glacial sediments deposited below the oxygen minimum layer with total- and organic carbon fluxes to the deep Arabian Sea from continuous sediment trap deployments. This comparison shows that the mass of organic carbon remineralized at the sediment water interface is mainly a function of the bulk sediment flux. The oxygen consumed by the organic carbon remineralization is of the order of the observed oxygen deficiency of the modern deep Arabian Sea water. We use the evidence from the northern Indian Ocean to speculate on the possible effect of abiogenic mineral flux on the removal of organic carbon from upper layers of the world ocean to the deep-sea. We assume that if the bulk accumulation rate (not primary productivity) influences the flux of organic carbon (that is fixed from the atmosphere by marine organisms), then mineral matter flux will exert a significant control over atmospheric CO2 contents. Model calculations incorporating transient changes in global bulk flux, caused by natural or anthropogenic changes, show that significant proportions of the observed changes in atmospheric CO2 contents can be explained by this mechanism.This paper was presented at Clima Locarno 90, the International Conference on Past and Present Climate Dynamics: Reconstruction of Rates of Change, held in Locarno, Switzerland, September 24 to 28, 1991, organized by the Swiss National Climate Program — ProClim, with support from the Swiss Academy of Sciences. Guest editor for these papers is Dr. K. Kelts Offprint requests to: F Sirocko  相似文献   

20.
Expedition data obtained in the coastal-shelf zone of the East Siberian Sea in September 2003, 2004, and 2008 are generalized. Studies of carbonate system in water and CO2 fluxes between ocean and atmosphere in this region confirmed that it was reasonable to divide the water area studied into two biogeochemical provinces and that the ecosystem of its coastal part is mainly of a heterotrophic nature. In different years, the extent of water supersaturation in carbon dioxide in the East Siberian Sea and the area of the CO2 release significantly changed. Geographic localization of the atmosphere action centers over the Arctic and their intensity were main determining factors; that told both on the formation of a basic character of the atmospheric and hydrological processes and on the dynamics of the CO2 exchange between water and air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号