首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluid inclusions in olivine and orthopyroxene of mantle peridotites from the Yushigou ophiolite can be divided into three types based on decrepitation temperature,shape and distribution.Type-1 fluid inclusions are characterized by oval or negative crystal shapes and small size(<5μm across).They occur in the cores and mantles of the host crystals,and decrepitated at>840℃.Type- 2 fluid inclusions have irregular or tabular shapes with relatively large size(10~100μm in length).They occur in irregular or circular healed micro-fractures in the host crystals,and decrepitated at 612~710℃.Type-3 fluid inclusions have size and shape,similar to type-2 fluid inclusions but occur in micro-fractures restricted to the margins of the host crystals,and decrepitated at much lower temperature from 190℃to 340℃.The three different types of fluid inclusions are interpreted to represent primary,metasomatic (pseudo-secondary)and secondary inclusions,respectively.Stepwise heating reveals three concentration peaks of volatiles at 200~400℃,400~800℃and 800~1200℃released from olivine and orthopyroxene in harzburgite and dunite from the Yushigou ophiolite, which are considered to correspond to the decrepitation of secondary,metasomatic and primary fluid inclusions at similar temperature ranges.CO2 is a major constituent in the volatiles released at three different temperature intervals.Trace amounts of H_2 and N_2 are present in the volatiles released at<800℃and trace amounts of H_2O and SO_2 are mainly present in the volatiles at 400~800℃.TheδD(-95.2‰,-306.3‰)of H_2O and theδ~(13)C(-15.5~-12.5‰)andδ~(18)O values(1.4~1.9‰)of CO_2 released at<800℃are lower than normal mantle values and suggest the mixing origin of crustal fluids( sedimentary organic)with ocean water,implying that Yushigou AOLM had undergone an intensive metasomatism by a fluid composed of CO_2.H_2O and SO_2,and followed by degassing. In contrast,the volatiles released at 800~1200℃are characterized by trace amounts of H_2 and CO in dunite and SO_2 in harzburgite, much lighterδ~(13)C(-29.1‰~-19.5‰),heavierδ~(13)O(8.8‰)of CO_2 and positive relationship between these isotopic ratios and the concentration of CO_2.Such features can be best explained by mixing of significant terrestrial crustal(organic)and minor mantle volatiles.We proposed that the Yishigou peridotites are more likely to have derived from a continental lithosphere instead of an oceanic lithosphere comprising the Yishigou gabbros and pillowed basalts.A supra-subduction tectonic setting is thus inferred for the Yushigou ophiolite.  相似文献   

2.
The knowledge of Martian salts has gone through substantial changes during the past decades. In the 70th of last century, Viking landers have noticed the existence of salts on Mars. Several salt species have been suggested from then on, such as sulfates and chlorides. However, their origin was a mystery due to the lack of observations. The recent explorations and related studies at the beginning of this century revealed that the crustal composition of Mars is similar to that of Earth, and it was hypothesized that almost one third of Martian surface was covered by oceans and lakes in the early stage of Mars. The huge water bodies may have dissolved a large quantity of ions from Martian primary rocks during the whole Noachian and Hesperian epoch. After the enormous drought event happened during the late Hesperian and the early Amazonian, these dissolved ions have formed huge salts deposits and most of them were preserved on Mars until today. To date, carbonates, sulfates, chlorides have all been detected by orbital remote sensing and by landers and rovers. However, the salt mineral assemblages on Mars seems to have some differences from those on Earth, e.g., rich in sulfates and lack of massive carbonates. To explain this difference, we propose that most of the surface carbonates precipitated from the ancient oceans may have been dissolved by the later ubiquitous acidic fluids originated from the global volcanism in the Hesperian era, and formed the enormous sulfate deposits as detected, and this hypothesis seems to be supported by the evidence that most of the sulfate deposits distribute around the Tharsis volcanic province while the survived carbonates located far from it. This process can release most of the carbon on Mars to the atmosphere in the form of CO2 and then be erased by the late heavy bombardments, which might have profound influence on the climate change happened in the Hesperian age. The positive correlation between the GRS results of the potassium distributions and the distribution of chlorides on Mars, together with the high Br concentration measured from the evaporate sediments at two Mars exploration rover landing sites, indicate that the brines in the regions where the chlorides deposited may have reached the stage for potassium salts deposition, thus we propose for the first time that potassium salts deposits might be prevalent in these regions.  相似文献   

3.
In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth,experimental research on reactions between carbonates and water or waterbearing minerals was carried out at the pressure of about 1GPa and the temperature range of 800-1500℃.The reactions took place in an open and nonequilibrium state.Chromatographic analyses of the gas products indicate that in the experiments there were generated CH4-dominated hydrocarbons,along with some CO2 and CO.Accordingly,we think there is no essential distinction between free-state water and hydroxy in the minerals in the process of hydrocarbon formation.This study indicates that reactions between carbonates and water or water-bearing minerals should be an important factor leading to the formation of abiogenetic hydrocarbons at the Earth‘s depth.  相似文献   

4.
Discontinuous chains of ultramafic rock bodies form part of the 3800–3700 Ma Isua Supracrustal Belt(ISB),hosted in the Itsaq Gneiss Complex of southwestern Greenland.These bodies are among the world’s oldest outcrops of ultramafic rocks and hence an invaluable geologic record.Ultramafic rocks from Lens B in the northwestern limb of ISB show characteristics of several stages of serpentinization and deserpentinization forming prograde and retrograde mineral assemblages.Ti-rich humite-group minerals such as titanian chondrodite(Ti-Chn)and titanian clinohumite(Ti-Chu)often occur as accessory phases in the metamorphosed ultramafic rocks.The Ti-rich humite minerals are associated with metamorphic olivine.The host olivine is highly forsteritic(Fo96-98)with variable Mn O and Ni O contents.The concentrations of the rare-earth elements(REE)and high-field strength elements(HFSE)of the metamorphic olivine are higher than typical mantle olivine.The textural and chemical characteristics of the olivine indicate metamorphic origin as a result of deserpentinization of a serpentinized ultramafic protolith rather than primary assemblage reflecting mantle residues from high-degrees of partial melting.The close association of olivine,antigorite and intergrown Ti-Chn and Ti-Chu suggests pressure condition between$1.3–2.6 GPa within the antigorite stability field(<700°C).The overall petrological and geochemical features of Lens B ultramafic body within the Eoarchean ISB indicate that these are allochthonous ultramafic rocks that recorded serpentine dehydration at relatively lower temperature and reached eclogite facies condition during their complex metamorphic history similar to exhumed UHP ultramafic rocks in modern subduction zone channels.  相似文献   

5.
Rock fragments from the deepest parts of a buried hydrothermal system belonging to the Mesozoic Tethys Ocean entered as xenoliths in a Miocenic diatreme,hence brought to the surface,in the Hyblean Plateau(Sicily).Some xenoliths consist of strongly serpentinized ultramafic rocks bearing blebs of abiotic organic matter,where clusters of amorphous carbon nanoparticles,including nanodiamonds,are immersed.Such an occurrence conjures up established hypotheses that diamond surfaces are suitable catalytic platforms stimulating the assemblage of complex bio-organic molecules relevant to the emergence of life on Earth.The appearance of bio-organic molecules under primitive Earth conditions is one of the major unsolved questions on the origin of life.Here we report new micro-Raman spectra on blebs of abiotic organic matter from a selected xenolith.Diamond bands were related to hydrogenated nanocrystalline diamonds,with size of nearly 1-1.6 nm,formed from organics at low pressures and temperatures.In particular,diamond surfaces can give rise to crystalline interfacial water layers that may have played a fundamental role in the early biosphere evolution as a good medium for rapidly transporting positive charges in the form of hydrated protons.Nowadays,proton gradients in alkaline hydrothermal vents along oceanic ridges are generally viewed as key pre-biotic factors.In general,serpentinites span the entire geological record,including prebiotic times.These hydrous ultramafic rocks often display evidence of abiotic carbon species,both organic and inorganic,including nanodiamonds,being also capable to give rise to chemiosmotic processes and proton gradients necessary to the organisms,such as the"Last Universal Common Ancestor"(LUCA),in the prebiotic Earth.  相似文献   

6.
Melt and fluid inclusions were studied in the minerals of Cenozoic olivine melanephelinites from the Chukchi Peninsula, Russia.The rock contain several generations of olivine phenocrysts varying in composition at mg=0.88~0.77.The phenocrysts bear fluid and melt inclusions recording various stages of melt crystallization in volcanic conduits and shallow magma chambers.Primary fluid inclusions are CO_2-dominated with a density of up to O.93 g/cm~3.All fluid inclusions are partially leaked,which is indicated by haloes of tiny fluid bubbles around large fluid inclusions in minerals.Melt inclusions contain various daughter crystals,which were completely resorbed in thermometric experiments at about 1230℃.Assuming that this temperature corresponds to the entrapment conditions of the CO_2 fluid inclusions,the minimum pressure of the beginning of magma degassing is estimated as 800MPa.Variations in the compositions of homogenized silicate melt inclusions indicate that olivine was the earliest crystalline phase followed by clinopyroxene,nepheline and orthoclase.This sequence is in agreement with the mineralogy of the rocks.The melts are strongly enriched in incompatible trace elements and volatiles(in addition to CO_2,high C1,F,and S contents were detected).There are some differences between the compositions of melts trapped in minerals from different samples.Variations in SiO_2,FeO,and incompatible element contents are probably related to melt generations at various levels in a homogeneous mantle reservoir.  相似文献   

7.
The mineralization of the Zhilingtou Au-Ag deposit occurred in a heated circulation system of infiltratedmeteoric water during the Indosinian and early Yanshanian, at a temperature ranging from 350 to 160℃ andat a depth of less than 2 km. The ore-forming solution was acidic, strongly oxidized. and poor in sulfur, withmoderate Cl~- activity and salinity. Au and Ag migrated in the forms of AuCl_2~- and AgCl_2~-, and then wereconcentrated and precipitated in a pressure-relief, dilatant zone-a tenso-shear fracture. Pressure relief and boiling were the major mechanism for unloading of the fluid. The hydrothermal fluidwas injected intermittently, and its boiling was characterized by pulsation. The presence of high-valence man-ganese might represent the auxiliary mechanism for remobilization of Au and Ag in the Chencai Group and fortheir entering into the hydrothermal fluid.  相似文献   

8.
Auriferous quartz veins in the Bankuan gold deposit occur in the interlayer broken zone of the basal conglomerate of the Tietonggou Formation or at the unconformity between the Tietonggou Formation and the crystalline basement.The composition of fluid inclusions in the minerals indicates that the nature and composition of ore-forming hydrothermal solutions show a drastical change soon after the solutions reached the Tietonggou Formation from the crystalline basement,resulting in gold precipitation.So the Bankuan gold deposit can be assigned to the conglomerate stata-bound-type deposits.137 thermometric data are concentrated in the three ranges 400-340℃,330-220℃ and 180-160℃,representing three episodes of metalogenesis,Oxygen isotope studies demonstrate the evolution of ore-forming hydrothermal solutions from early metamorphic to late meteoric,Diversity of ore-forming materials dominated by deep-source material is supported by sulphur and lead isotope data.From the above discussions it may be concluded that the deposit formed by metamorphism induced as a result of Mesozoic northward intracontinental subduction along the Machaoying fault.  相似文献   

9.
The Kengdenongshe deposit is a newly discovered large Au-Ag-Pb-Zn polymetallic deposit in the eastern Kunlun metallogenic belt, and the genetic relationship between Pb-Zn-rich ore bodies and Au-rich ore bodies in this deposit is controversial. Therefore, comparative studies of mineralization, alteration, and fluid inclusions in the two types of ore bodies were carried out with the statistical analysis of the correlation among ore-forming elements of Au, Ag, Pb and Zn. The results show that, from north to south, the mineralization changes gradually from Pb-Zn-rich to Au-rich with the wall-rock alteration from silicification-epidotization to baritization-marbleization-silicification. In addition, the structures of Pb-Zn-rich ores indicate a hydrothermal sedimentary origin with the late hydrothermal superposition, while those of Au-rich ores show features of hydrothermal origin. Besides, based on the study of fluid inclusions in this mining area, the ore-forming fluid of Pb-Zn-rich ores is low temperature (focus on 150-170°C) and low-medium salinity (1.74%-10.24% NaCleqv), while that of Au-rich ores displays low-medium temperature (manily 130-250°C) with low-medium salinity (0.35%-10.24% NaCleqv). Pb-Zn and Au-Ag show positive correlation (correlation coefficient r>0.25), but Au is poorly correlated with Pb and Zn (correlation coefficient r<0.15). However, to due to the late stage hydrothermal superimposition, Au is rather well correlated with Pb in high grade ores. In summary, there may exist two epochs of mineralization in the Kengdenongshe polymetallic deposit. The early one is Pb-Zn mineralization stage with characteristics of hydrothermal sedimentary origin, and the ore-forming fluid may be derived from the mixture of magmatic water and seawater. While the later one is Au mineralization stage, having characteristics of hydrothermal origin with subsequent hydrothermal superimpositions, and the ore-forming fluid is mainly derived from magmatic water that mixed with meteoric water. © 2018, Science Press. All right reserved.  相似文献   

10.
Uranium-bearing hydrothermal solutions during the stage of ore deposition are weakly alkaline and of the Ca^2 -Na^ /HCO3^- -F^- type.UO2(CO3)2^2- and UO2F4^-, are dominant in the hydrothermal solutions with respect to their activity.Wall-rock hydrothermal alterations ,temperature and pressure drop and the reducing capability of rock assemblage (Δeh) led to a decrease in Eh of the hydrothermal solutions and an increase in Eh at which uranium began precipitating.Therefore,the mechanism of uranium precipitation is essentially the reduction of uranium complexes.The granite-type uranium deposits are the most important type of uranium resources in China.Discussions will be made in this paper concerning the hydrothermal speciation and precipitation mech-anisms of uranium complexes in the light of fluid inclusion and geological data from some major de-posits of this type in South China.  相似文献   

11.
The Precambrian Dengying Formation is a set of large-scale, extensively dolomitized, carbonate reservoirs occurring within the Sichuan Basin. Petrographic and geochemical studies reveal dolomitization was a direct result of precipitation by chemically distinct fluids occurring at different times and at different intensities. Based on this evidence, dolomitization and multiple fluid flow events are analyzed, and three types of fluid evolution models are proposed. Results of analysis show that Precambrian Dengying Formation carbonates were deposited in a restricted peritidal environment(630–542 Ma). A high temperature and high Mg~(2+) concentration seawater was a direct result of dolomitization for the micrite matrix, and for fibrous aragonite in primary pores. Geochemical evidence shows low δ~(18)O values of micritic dolomite varying from-1.29‰ to-4.52‰ PDB, abundant light rare earth elements(REEs), and low dolomite order degrees. Microbes and meteoric water significantly altered dolomite original chemical signatures, resulting in algal micritic dolomite and the fine-grained, granular, dolosparite dolomite having very negative δ~(18)O values. Finely crystalline cement dolomite(536.3–280 Ma) and coarsely crystalline cement dolomite have a higher crystallization degree and higher order degree. The diagenetic sequence and fluid inclusion evidence imply a linear correlation between their burial depth and homogenization temperatures, which closely resemble the temperature of generated hydrocarbon. Compared with finely crystalline dolomite, precipitation of coarsely crystalline dolomite was more affected by restricted basinal fluids. In addition, there is a trend toward a more negative δ~(18)O value, higher salinity, higher Fe and Mn concentrations, REE-rich. Two periods of hydrothermal fluids are identified, as the exceptionally high temperatures as opposed to the temperatures of burial history, in addition to the presence of high salinity fluid inclusions. The early hydrothermal fluid flow event was characterized by hot magnesium-and silicon-rich fluids, as demonstrated by the recrystallized matrix dolomite that is intimately associated with flint, opal, and microcrystalline quartz in intergranular or intercrystalline pores. This event was likely the result of a seafloor hydrothermal chimney eruption during Episode I of the Tongwan Movement(536.3±5.5 Ma). In contrast, later hydrothermal fluids, which caused precipitation of saddle dolomite, were characterized by high salinity(15–16.05 wt% NaCl equivalent) and homogenization temperatures(250 to 265°C), δ~(18)O values that were more enriched, and REE signatures. Geochemical data and the paragenetic sequence indicate that this hydrothermal fluid was related to extensive Permian large igneous province activity(360–280 Ma). This study demonstrates the presence of complicated dolomitization processes occurring during various paleoclimates, tectonic cycles, and basinal fluids flow; results are a useful reference for these dolomitized Precambrian carbonates reservoirs.  相似文献   

12.
<正>Zabuye Salt Lake in Tibet,China is a carbonate-type salt lake,which has some unique characteristics that make it different from other types of salt lakes.The lake is at the latter period in its evolution and contains liquid and solid resources.Its brine is rich in Li,B,K and other useful minor elements that are of great economic value.We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15℃and 25℃.The crystallization sequence of the primary salts from the brine at 25℃is halite(NaCl)→aphthitalite (3K_2SO_4·Na_2SO_4)→zabuyelite(Li_2CO_3)→trona(Na_2CO_3·NaHCO_3·2H_2O)→thermonatrite (Na_2CO_3·H_2O)→sylvite(KCl),while the sequence is halite(NaCl)→sylvite(KCl)→trona (Na_2CO_3·NaHCO_3·2H_2O)→zabuyelite(Li_2CO_3)→thermonatrite(Na_2CO_3·H_2O)→aphthitalite (3K_2SO_4·Na_2SO_4) at 15℃.They are in accordance with the metastable phase diagram of the Na~+,K~+-Cl~-, CO_3~(2-),SO_4~(2-)-H_2O quinary system at 25℃,except for Na_2CO_3·7H_2O which is replaced by trona and thermonatrite.In the 25℃experiment,zabuyelite(Li_2CO_3) was precipitated in the early stage because Li_2CO_3 is supersaturated in the brine at 25℃,in contrast with that at 15℃,it precipitated in the later stage.Potash was precipitated in the middle and late stages in both experiments,while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

13.
This paper reviews the origin and evolution of fluid inclusions in ultramafic xenoliths,providing a framework for interpreting the chemistry of mantle fluids in the different geodynamic settings.Fluid inclusion data show that in the shallow mantle,at depths below about 100 km,the dominant fluid phase is CO_2±brines,changing to alkali-,carbonate-rich(silicate) melts at higher pressures.Major solutes in aqueous fluids are chlorides,silica and alkalis(saline brines;5-50 wt.%NaCl eq.).Fluid inclusions in peridotites record CO_2 fluxing from reacting metasomatic carbonate-rich melts at high pressures,and suggest significant upper-mantle carbon outgassing over time.Mantle-derived CO_2(±brines) may eventually reach upper-crustal levels,including the atmosphere,independently from,and additionally to magma degassing in active volcanoes.  相似文献   

14.
山东招平断裂带大磨曲家金矿床流体包裹体初步研究   总被引:5,自引:8,他引:5  
The Damoqujia gold deposit,discovered recently and located in the north of Zhaoping fault zone,is a large altered rock type deposit.In this paper,we report the preliminary research results of the fluid inclusions and discuss its metallogenic implications. The homogenization temperatures of fluid inclusions fall into four ranges:310~350℃,230~270℃,160~200℃and 110~150℃; corresponding to the four stages of hydrothermal ore-forming processes:coarse grain pyrite-milk white quartz stage(Ⅰ),smoky gray Au-bearing quartz-fine grain pyrite stage(Ⅱ),Au-bearing polymetallic sulfide-quartz stage(Ⅲ),and quartz-carbonate stage(Ⅳ). Ore-forming fluid is with low salinity and low density,ranging from 1.4 Wt_(NaCl)% to 13.6 Wt_(NaCl)% and from 0.48g/cm~3 to 1.03g/cm~3 respectively.The inclusions are dominated by H_2O and CO_2 in gaseous compositions,and Na~ and K~ in positive ions,SO_4~(2-)and Cl~- in negative ions of liquid compositions.Au-S complex is the major form for transportation of gold.The pressure varied from 260MPa to 340MPa during the formation of CO_2-bearing inclusions at the early mineralization;the fluids are rich in SO_4~(2-)and Na~ .The pressure is 26-49×10~5 Pa during the formation of the aqueous salt inclusions in late mineralization,the inclusions are rich in CI~-(F~-), Na~ .δ~(18)O_(qurrtz)is 10.64~12.68%o,and the correspondingδ~(18)O_(H_2)O andδD is-5.44~6.47‰and-95.52~-106.48‰respectively.Based on the studies about compositions and hydrogen and oxygen isotopes of inclusions,it is evidenced that ore-forming fluid is magmatic hydrothermal fluid in early period,but affected by meteoric water in late.  相似文献   

15.
The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.  相似文献   

16.
http://www.sciencedirect.com/science/article/pii/S1674987115000961   总被引:20,自引:0,他引:20  
The Jiaodong gold deposits are currently the most important gold resources(with Au reserves of4000 t) in China,and the leading gold-producing country globally(with Au production of ~428 t in2013).Jiaodong is also considered as perhaps the only world-class to giant gold accumulation on the planet where relatively young gold ores(ca.130-120 Ma) were deposited in rocks that are 2 Ga older.The Xincheng world-class high-grade gold deposit,with a proven reserve of 200 t gold,is one of the largest deposits in the giant gold province of the Jiaodong Peninsula.It is located in the northwestern part of the jiaobei Uplift,and hosted by ca.132-123 Ma Xincheng quartz monzonites and monzogranites.Ore zones are structurally controlled by the NE-trending and NW-dipping Jiaojia Fault and subsidiary faults,and are mainly restricted to the footwall of the fault.The dominant disseminated- and stockworkstyle ores are associated with strong sericitization,silicification,sulfidation and K-feldspathization,and minor carbonate wallrock alteration halos.The four mineralization stages are pyrite-quartz-sericite(stage 1),quartz-pyrite(stage 2),quartz-polysulfide(stage 3) and quartz-carbonate(stage 4).Gold occurs dominantly as electrum,with lesser amounts of sulfide-hosted native gold and rare native silver and argentite,normally associated with pyrite,chalcopyrite,galena and sphalerite:the latter with proven resources of about 105 t Ag,713 t Cu,and 5100 t S.There are three types of ore-related fluid inclusions:type 1 aqueous-carbonate(H_2O-CO_2),type 2aqueous(liquid H_2O+vapor H_2O),and type 3 CO_2(liquid CO_2 and vapor CO_2) inclusions.Homogenization temperatures range from 221 to 304℃ for type 1 inclusions,with salinities of 2.4-13.3 wt.%NaCl eq.,and bulk densities of 0.858-1.022 g/cm~3.The δ~(34)S_(CDT) values of hydrothermal sulfides are 4.3-10.6‰and δ~(18)O values of hydrothermal quartz have a median value of 13.0‰.δD values of fluid inclusions in hydrothermal quartz have a median value of-75‰.Calculated δ~(18)Owater has a median value of 5.2‰.The timing of gold mineralization at the Xincheng gold deposit is younger than 123±1 Ma,and likely between 120.9 and 119.9 Ma.A minerals system genetic model for the probable epizonal orogenic Xincheng deposit suggests an initial medium temperature,CO_2-rich,and low salinity H_2O-CO_2 deeply sourced metamorphic ore fluid associated with dehydration and decarbonization of subducting Paleo-Pacific lithosphere.The Jiaojia Fault constrained the migration of ore-forming fluids and metals at the brittle-ductile transition.Fluid immiscibility,caused by episodic pressure drops,led to significant high-grade gold deposition in the giant Xincheng gold deposit.  相似文献   

17.
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO_2-CH_4 single phase FIs,2) CO_2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO_2- and CH_4-rich FIs of the CO_2-CH4-H_2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO_2-rich FIs of the CO_2-H_2O-NaCl system and liquid-rich FIs of the H_2O-NaCl system.For the CO_2-CH_4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO_2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm~3 to 0.8 g/cm~3;for two- or three-phase FIs of the CO_2-CH_4-H_2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm~3 to 1.0 g/cm~3,respectively.For CO_2-H_2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H_2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm~3 to 1.0 g/cm~3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO_2 and CH_4 contents and reducibility(indicated by the presence of CH_4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.  相似文献   

18.
The Earth is the only body in the solar system for which significant observational constraints are accessible to such a degree that they can be used to discriminate between competing models of Earth's tectonic evolution.It is a natural tendency to use observations of the Earth to inform more general models of planetary evolution.However,our understating of Earth's evolution is far from complete.In recent years,there has been growing geodynamic and geochemical evidence that suggests that plate tectonics may not have operated on the early Earth,with both the timing of its onset and the length of its activity far from certain.Recently,the potential of tectonic bi-stability(multiple stable,energetically allowed solutions)has been shown to be dynamically viable,both from analytical analysis and through numeric experiments in two and three dimensions.This indicates that multiple tectonic modes may operate on a single planetary body at different times within its temporal evolution.It also allows for the potential that feedback mechanisms between the internal dynamics and surface processes(e.g.,surface temperature changes driven by long term climate evolution),acting at different thermal evolution times,can cause terrestrial worlds to alternate between multiple tectonic states over giga-year timescales.The implication within this framework is that terrestrial planets have the potential to migrate through tectonic regimes at similar‘thermal evolution times'(e.g.,points were they have a similar bulk mantle temperature and energies),but at very different'temporal times'(time since planetary formation).It can be further shown that identical planets at similar stages of their evolution may exhibit different tectonic regimes due to random variations.Here,we will discuss constraints on the tectonic evolution of the Earth and present a novel framework of planetary evolution that moves toward probabilistic arguments based on general physical principals,as opposed to particular rheologies,and incorporates the potential of tectonic regime transitions and multiple tectonics states being viable at equivalent physical and chemical conditions.  相似文献   

19.
On the basis of the mechanism of formation of mineral inclusions, it may be assumed that a certain relation exists between the compositions of fluid inclusions in various minerals formed at the same stage of hydrothermal activity. In order to study the genetic relationships between different minerals in the Bayan Obo iron deposit, the compositions(K~+, Na~+, Ca~+, Mg~+, F~+, Cl~+, CO_2~(2-), ΣSO_4~(2-) and pH) of inclusions in fluorite(23), hematite(13), magnetite(3), sodium pyroxene(2) and dolomite(5) from the main mine and the eastern mine were determined by using the vacuum decrepitation and leaching methods, and cluster analyses of the data on the compostions were made. The Q-mode cluster analysis indicates that some iron oxide minerals in the deposit are related to dolomite of sedimentary origin, while others are related to fluorite and sodium pyroxene--products of hydrothermal activity. The R-mode cluster analysis shows that the components of the leaching solution may be divided into two groups: one includes CO_2~(2-), Mg~(2+) and H~+(pH), which are obviously associated with dolomite; the other comprises Na~+, K~+, Ca~+, F~+, Cl~+ and SO_4~(2-), which may possibly represent the composition of hydrothermal solutions.The reaction of the Na-F-Cl solution(pH 4.72) with hematite dolomite at 300℃ and 5 × 10~7 Pa and under alternately"static and dynamic" conditions produced large amounts of hematite and fluorite and small amounts of smectite and Na(Fe) silicates, and the hematite-fluorite assemblage accords with the actual geological conditions in the deposit. From a comparison between the compositions of"static" and"dynamic" solution samples, it may be known that the flow reaction facilitates the migration of Fe, F, Ca and other components as well as Na-metasomatism(Na and Si are fixed in a solid phase).The study of the compositions of mineral inclusions and simulation experiments on hydrothermal metasomatism have provided new evidence for the hypothesis of metamorphosed-sedimentary and hydrothermal-remoulding origin of the Bayan Obo deposit, and pointed out emphatically that hydrothermal metasomatism plays an important role in the formation of the mineral deposit, particularly in the main and the east mine.  相似文献   

20.
The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H2O-NaCl-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The ore-forming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号