首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究   总被引:7,自引:2,他引:5  
本文利用普林斯顿大学全球大气强迫场资料,驱动公用陆面过程模式(Community Land Model version 4.0,CLM4.0)模拟了中国区域1961~2010年土壤湿度的时空变化。将模拟结果与观测结果、美国国家环境预报中心再分析数据(National Centers for Environmental Prediction Reanalysis,NCEP)和高级微波扫描辐射计(Advanced Microwave Scanning Radiometer-EOS,AMSR-E)反演的土壤湿度进行了对比分析,结果表明CLM4.0模拟结果可以反映出中国区域观测土壤湿度的空间分布和时空变化特征,但东北、江淮和河套三个地区模拟值相对于观测值在各层次均系统性偏大。模拟与NCEP再分析土壤湿度的空间分布基本一致,与AMSR-E的反演值在35°N以北的分布也基本一致;从1961~2010年土壤湿度模拟结果分析得出,各层土壤湿度空间分布从西北向东南增加。低值区主要分布在新疆、青海、甘肃和内蒙古西部地区。东北平原、江淮地区和长江流域为高值区。土壤湿度数值总体上从浅层向深层增加。不同深度土壤湿度变化趋势基本相同。除新疆西部和东北部分地区外,土壤湿度在35°N以北以减少趋势为主,30°N以南的长江流域、华南及西南地区以增加为主。在全球气候变暖的背景下,CLM4.0模拟的夏季土壤湿度在不同程度上响应了降水的变化。中国典型干旱区和半干旱区土壤湿度减小,湿润区增加。其中湿润区土壤湿度对降水的响应最为显著,其次是半干旱区和干旱区。  相似文献   

2.
基于普林斯顿大学1948-2006年3h一次、1 °×1 °空间分辨率的全球陆面驱动数据,利用NCAR系列陆面模式CLM3.0、CLM3.5、CLM4.0,分别对全球近50 a的陆面状况进行了offline模拟试验.在此基础上,对比分析了不同版本模式对全球土壤温度、土壤湿度、地表感热、潜热和地表径流气候态的模拟结果,揭示了不同版本模式对全球陆面变量模拟的差异及主要特征.结果表明:1)CLM系列模式模拟的土壤温度、湿度在全球范围内存在一定差异.与CLM4.0相比,CLM3.0和CLM3.5模拟的1月、7月的浅层和深层土壤温度在北半球中高纬度存在明显的暖偏差.CLM3.0模拟的土壤湿度在北半球高纬地区均存在不同程度的偏湿,而在热带及中纬度地区则以偏干为主,尤其是对热带地区深层土壤湿度的模拟存在严重偏干的现象;相比之下,CLM3.5模拟的浅层土壤湿度仅在北半球高纬地区存在偏湿的现象;二者对深层土壤湿度的模拟差异较小.2)CLM系列模式模拟的地表能量通量和地表水文变量也存在较明显的差异.模式对潜热通量和感热通量的明显差异主要出现在热带地区,与CLM4.0相比,CLM3.0模拟的潜热(感热)通量总体偏小(大),而CLM3.5模拟的潜热(感热)通量以偏大(小)为主.CLM3.0模拟的地表径流在热带地区明显偏大,CLM3.5在一定程度上改善了上述区域径流偏大的问题,但过分低估了上述地区的地表径流.3)模式模拟结果的差异具有明显的季节变化和区域性特点.总体而言,CLM3.0对不同地区的土壤湿度和冠层蒸散的季节变化模拟都存在较大偏差,其模拟的土壤湿度明显偏低,而对冠层蒸腾作用在冠层蒸散过程中所做的贡献估计不足;CLM3.5和CLM4.0对上述结果有了较明显的改进.对于其他陆面因子的季节变化而言,CLM3.0的模拟能力也存在一定程度的不足,而CLM3.5和CLM4.0的模拟结果则更为合理.  相似文献   

3.
内蒙古地区下垫面变化对土壤湿度数值模拟的影响   总被引:2,自引:0,他引:2  
利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)进行了替换,使用中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气强迫场资料,分别驱动基于同时改进土壤质地和陆地覆盖数据的CLM3.5(CLM-new)、基于只改进陆地覆盖数据的CLM3.5(CLM-clcv)、基于只改进土壤质地数据的CLM3.5(CLM-snss)和基于原始下垫面数据的CLM3.5(CLM-ctl),对内蒙古地区2011~2013年土壤湿度的时空变化进行模拟试验,研究下垫面改进对CLM3.5模拟土壤湿度的影响。将四组模拟结果与46个土壤水分站点观测数据进行对比分析,结果表明:相对于控制试验,CLM-clcv、CLM-snss和CLM-new都能不同程度地改进土壤湿度模拟,其中CLM-clcv主要在呼伦贝尔改进明显,CLM-snss则在除呼伦贝尔以外的大部地区改进显著,CLM-ctl模拟的土壤湿度在各层上均系统性偏大,而CLM-new模拟土壤湿度最好地反映出内蒙古地区观测的土壤湿度的时空变化特征,显著改善了土壤湿度的模拟,体现在与观测值有着更高的相关系数和更小的平均偏差与均方根误差。  相似文献   

4.
本文利用1981~2016年的CRUNCEP资料(0.5°×0.5°)作为大气驱动数据,驱动CLM4.5(Community Land Model version 4.5)模式模拟了青藏高原地区1981~2016 年的土壤湿度时空变化。将模拟数据与台站观测资料、再分析资料(ERA-Interim和GLDAS-CLM)和微波遥感FY-3B/MWRI土壤湿度资料对比验证,表明了CLM4.5模拟资料可以合理再现青藏高原地区土壤湿度的空间分布和长期变化趋势。而且基于多种卫星遥感资料建立的较高分辨率(0.1°×0.1°)的青藏高原地表数据更加细致地刻画了土壤湿度的空间变化。对比结果表明:CLM4.5模拟土壤湿度与各个台站观测的时空变化一致,各层土壤湿度的模拟和观测均显著相关,且对浅层的模拟优于深层,但模拟结果比台站观测系统性偏大。模拟与再分析资料和微波遥感资料土壤湿度的空间分布具有一致性,均表现为从青藏高原的西北部向东南部逐渐增加的分布特点,三江源湿地和高原东南部为土壤湿度的高值区,柴达木盆地和新疆塔里木盆地的沙漠地区为低值区,土壤湿度由浅层向深层增加。土壤湿度的长期变化趋势基本表现为“变干—变湿”相间的带状分布,不同层次的土壤湿度变化趋势基本一致。模拟资料也合理地再现了夏季土壤湿度逐月的变化:高原西南地区的土壤湿度明显大范围增加,北部的柴达木盆地的干旱范围也明显的向北收缩,高原南部外围土壤湿度也明显增加,CLM4.5模拟土壤湿度比再分析资料和微波遥感资料更加细致地描述了夏季逐月土壤湿度空间分布及其变化特征。  相似文献   

5.
利用青藏高原东北部地区阿柔冻融观测站2013年5月至2014年11月观测资料,对通用陆面过程模式(CLM4.0)和动态陆面过程模式(DLM)青藏高原高寒地区土壤湿度模拟性能进行了评估。结果显示两种模式均能够较好的反映浅层(40 cm)土壤湿度动态变化,然而显著低估非冻结期土壤湿度;通过土壤有机质含量对土壤湿度模拟敏感性分析发现模式模拟土壤湿度偏干可能与模式中土壤有机质方案不足有关。在此基础上改进DLM模式土壤有机质和冻土液态水渗透方案,实验结果表明新参数化方案显著提高了高寒、高有机质含量地区模式土壤湿度模拟,平均偏差(BIAS)、均方根误差(RMSE),均方差(MSE)和相关系数(R)分别达到0.032 m~3·m~(-3),0.078 m~3·m~(-3),0.010 m~3·m~(-3)和0.866。  相似文献   

6.
通过陆面模式模拟得到的陆面参数精度易受强迫数据质量的影响,为了提高基于NCEP/NCAR的强迫数据精度,提出了一种新的强迫数据构造方法。该方法以静止气象卫星FY-2的反演产品——逐时降水估计和地面入射太阳辐射数据为基础,结合部分NCEP/NCAR再分析数据构造用于陆面模式模拟的高时空分辨率强迫数据(FYDATA),进一步利用陆面模式CLM3.0模拟得到较高精度的时空间连续的土壤湿度数据。与站点观测数据的比较表明,FYDATA的模拟结果在空间分布和时间变率上与观测数据均较为一致;与再分析数据的模拟结果比较表明,无论是月平均的站点尺度还是区域尺度,FYDATA的模拟结果都优于时空分辨率较粗的NCEP/NCAR再分析数据的模拟结果,充分说明该数据构造方法的有效性。  相似文献   

7.
土壤质地对中国区域陆面过程模拟的影响   总被引:6,自引:2,他引:4  
利用陆面过程模式(CLM3.5)和中国区域两种土壤质地数据(分别来自第二次中国土壤调查SNSS和联合国粮食农业组织FAO),研究了土壤质地变化对于模式模拟的陆表水热变量的影响。结果显示,土壤质地对土壤水文学变量的影响远大于对土壤热力学变量的影响,尤其是对于饱和土壤含水量和饱和水力传导率的影响。对于模式的输出,土壤质地影响比较明显的有土壤湿度、总径流和土壤渗透等水文学变量以及地表潜热、地表感热和土壤热通量等热力学变量,而影响相对较小的有地面吸收的太阳辐射和地表反照率。同时,发现基于SNSS模拟的土壤湿度与站点观测值更加接近。因此,本研究认为基于SNSS土壤质地数据可以有效地改进模式模拟结果,建议以后在陆面模式试验中尽可能使用以观测为基础的SNSS土壤质地数据。  相似文献   

8.
基于GLDAS产品的青藏高原土壤湿度特征分析   总被引:1,自引:0,他引:1  
选取青藏高原中部那曲地区10个试验点2010年8月至2012年12月的土壤湿度数据与全球陆面数据同化系统(GLDAS)中4个陆面过程模型(NOAH、CLM、VIC、MOSAIC)模拟得到的土壤水分产品进行对比分析,发现NOAH陆面模式资料在青藏高原适用性较好。采用中国科学院青藏高原研究所那曲站10个试验点观测土壤湿度资料和长时间序列的GLDAS陆面模式资料研究青藏高原地区不同深度土壤湿度的时空分布特征。结果表明:那曲地区土壤湿度呈现显著的季节变化特征,一年之中出现两个峰值和两个低值阶段。基于NOAH陆面数据同化产品发现青藏高原土壤湿度的空间分布呈现明显的纬向分布特征,随纬度的升高,土壤湿度值降低;同时,青藏高原中部浅层土壤和中间层土壤湿度有变湿的趋势。0~10 cm、10~40 cm、40~100 cm土壤湿度EOF展开第一模态(EOF1)在高原北部及南部呈反位相分布。  相似文献   

9.
肖宇  马柱国  李明星 《大气科学》2017,41(1):132-146
本文将四个常见陆面模式CLM3.5(Community Land Model Version 3.5)、Noah_LSM(The Noah Land Surface Model)、VIC(Variable Infiltration Capacity)以及SSiB(The Simplified Simple Biosphere Model)中土壤湿度影响蒸散的参数化方案进行简化,并利用实验观测资料对不同参数化方案进行评估,探究不同陆面模式对土壤湿度与蒸散关系的模拟差异,从而为提高模式的模拟能力提供依据。结果表明,(1)CLM与SSiB中计算土壤湿度影响裸土蒸发的参数化方案较Noah_LSM和VIC更接近真实的物理过程,同时CLM与SSiB模式中土壤湿度对蒸发的影响程度较Noah_LSM和VIC大;而对于下垫面有植被条件下的蒸散而言,CLM中包含了植被光合作用、呼吸作用等生物物理学过程,与实际情况更为接近,并且CLM与SSiB中土壤湿度对植被蒸散的影响程度大于VIC,Noah_LSM最低;(2)根据干旱区、半干旱区、半湿润区以及湿润区各站点的分析可知,CLM、SSiB与Noah_LSM中土壤湿度影响蒸散的参数化方案的拟合效果较VIC好,同时在部分站点CLM与SSiB的参数化方案稍优于Noah_LSM。区域之间比较说明,四个模式对干旱半干旱区的模拟效果明显较半湿润区和湿润区好。  相似文献   

10.
中国区域不同深度土壤湿度模拟和评估   总被引:5,自引:0,他引:5  
朱晨  师春香  席琳  黄晓龙 《气象科技》2013,41(3):529-536
利用FY-2静止气象卫星逐小时降水估计产品和地面入射太阳辐射反演产品,利用NCEP/NCAR再分析数据集中的地面气温、湿度、气压和风速数据,构造中国区域高时空分辨率的大气强迫场,驱动CLM3.0陆面模式模拟得到了2005年7月至2010年6月中国区域10 km分辨率的日平均土壤湿度数据集.通过与中国农气观测站土壤湿度数据进行比较分析,结果表明:在0~10 cm和10~20 cm深度上,模式模拟的土壤湿度结果从空间分布和时间变率上均与观测数据有很好的一致性,在70~100 cm深度上,空间分布有较好的一致性,但模式模拟结果的时间变率较小.按照气候特点将中国分为8个区域,分析了区域平均土壤湿度的时间变化规律,中国西北和西南地区有很好的一致性,东北和华北地区次之.  相似文献   

11.
利用2012年7-9月微气象蒸发观测实验的观测资料和陆面模式CLM4.0,对荒漠草原过渡带快速变化的陆面过程进行了单点数值模拟试验,通过比较模拟值与观测值来检验模式的模拟能力。结果表明:(1)CLM4.0模式能较好地模拟下垫面快速变化的辐射通量、湍流通量、土壤温度及土壤含水量的变化特征,但模拟值较观测值还存在一定偏差。在干旱及湿润地表状况下,CLM4.0模式模拟的反射辐射与观测值的偏差较小,而草地地表时模拟值较观测值偏高;CLM4.0模式较好地模拟了地表长波辐射的变化趋势,但是在正午和夜间偏差较大。(2)CLM4.0模式模拟的湍流通量与观测值之间的相关系数达0.85以上,但模拟值较观测值偏高。(3)CLM4.0模式模拟的土壤温度及含水量较观测值偏小,且对强降水引起的土壤含水量的变化过程的模拟性能较差。发展适用于干旱荒漠草原过渡带的土壤孔隙度参数化方案,进而通过改善土壤热导率、导水率的模拟有助于提高该类下垫面土壤温度及土壤含水量的模拟性能。  相似文献   

12.
基于陆面数据同化系统改进中国区域土壤湿度的模拟研究   总被引:1,自引:0,他引:1  
利用中国区域地面气象要素驱动数据集(China Meteorological Forcing Dataset,CMFD),驱动中国科学院大气物理研究所陆面数据同化系统(LDAS-IAP/CAS-1.0),得到了2003—2010年中国区域土壤湿度数据集,同时不考虑同化卫星遥感亮温数据,直接驱动CLM3.0模拟了2003—2010年中国区域土壤湿度时空变化。将二者土壤湿度模拟结果、地面土壤湿度观测值、美国国家环境预报中心(NCEP)气候再分析数据(CFSR)、基于主动和被动微波传感器的全球土壤湿度数据(SM-MW)进行对比分析发现,考虑同化卫星遥感亮温后与不考虑同化模拟的土壤湿度空间分布有明显差异。将模拟、同化土壤湿度值与观测值对比发现,同化后的青海、甘肃、宁夏和陕西地区土壤湿度较模拟结果有一定的改善。相对于CFSR再分析数据和SM-MW遥感反演数据,模拟和同化土壤湿度值在35°N以南对土壤湿度空间分布的细节刻画更为细致。同化卫星遥感亮温数据后,从2003—2010年土壤湿度四季和年平均空间分布看出,土壤湿度空间分布从西北向东南增加。东北、江淮地区及青藏高原为土壤湿度高值区,新疆和内蒙古为土壤湿度低值区。从变化趋势来看,内蒙古、青藏高原和新疆南部年平均土壤湿度呈增加趋势,其他地区以减小趋势为主。  相似文献   

13.
不同陆面模式对我国地表温度模拟的适用性评估   总被引:1,自引:0,他引:1       下载免费PDF全文
基于CLDAS大气驱动数据驱动CLM3.5陆面模式和3种不同参数化方案下的Noah-MP陆面模式模拟得到的地表温度,利用中国气象局2009-2013年2000多个国家级地面观测站地表温度进行质量评估。结果表明:从时间分布看,模拟地表温度与观测的偏差及均方根误差均呈季节性波动;从空间分布看,模拟地表温度与观测的偏差及均方根误差在中国东部地区相对于中国西部地区更小。选择Noah-MP陆面模式3种不同参数化方案模拟结果进行对比,结果表明:Noah-MP模式的非动态植被方案不变时,考虑植被覆盖度的二流近似辐射传输方案的Noah-MP陆面模式模拟的地表温度优于考虑太阳高度角和植被三维结构的二流近似辐射传输方案Noah-MP陆面模式模拟的地表温度;选择动态植被方案的Noah-MP陆面模式模拟的地表温度优于选择非动态植被方案的Noah-MP陆面模式;总体而言,考虑动态植被方案的Noah-MP陆面模式模拟的地表温度优于其他两种参数化方案的Noah-MP陆面模式以及CLM3.5陆面模式模拟的地表温度。  相似文献   

14.
陆面过程模式中输入参数的不确定性会引起模式模拟偏差。为了改善模式的模拟能力,减小参数的不确定性,通常要进行参数优化过程。利用温江站观测的近地层资料,结合粒子群优化算法(Particle Swarm Optimization,PSO),优化了陆面过程模式SHAW(Simultaneous Heat and Water)中难以直接观测的土壤和植被参数。在此基础上,分别利用优化后的参数和默认参数运行SHAW模式,模拟该地区陆面过程特征,并与观测值进行对比,研究优化参数后对陆面过程模拟的影响。结果表明:利用PSO算法优化SHAW模式后,能提高土壤湿度和潜热通量的模拟性能,模拟的土壤湿度和潜热通量与相应的观测值偏差减小。但与此同时,并没有改进净辐射、土壤温度和感热通量的模拟性能。说明PSO算法可以用于陆面模式参数优化,但仅仅通过参数优化并不能同时提高所有变量的模拟性能。  相似文献   

15.
《高原气象》2021,40(3):621-631
陆面模式可以模拟获得高时空分辨率连续的多层土壤湿度,但其精度受到地表参数的影响,土壤质地就是其中之一,本文利用CLDAS-V2.0(中国气象局陆面数据同化系统)驱动Noah-MP模式,开展了其对土壤湿度模拟的影响研究。结果表明,利用中国第二次土壤调查数据制作的中国区土壤质地数据(SNSS)与模式自带土壤质地数据(FAO)模拟的2014年中国区域土壤湿度日均值存在显著差异,0~10cm深度23.2%的区域差异性大于10%,74.9%的区域差异性大于1%;10~40 cm深度20.8%的区域差异性大于10%,69.8%的区域差异性大于1%。从时间序列来看,两组实验模拟结果均能基本反映土壤湿度随时间变化的规律,SNSS在0~10 cm处模拟结果表现更好,但在10~40 cm处出现低估现象。从空间分布分析,使用SNSS土壤质地类型之后,CLDAS/Noah-MP土壤湿度模拟结果与观测值的偏差为负值的区域较多,尤其是10~40 cm深度,大多数区域模拟值均存在低估;与FAO模拟结果比较,SNSS在东南和西南地区0~10 cm和10~40 cm深度的模拟效果有所改进;东北地区0~10 cm深度SNSS的模拟效果好于FAO,但10~40 cm深度的模拟精度两者相差较小。  相似文献   

16.
土壤温度是陆气相互作用以及陆面模式模拟的关键参量,但高分辨率时空连续的土壤温度获取困难,尤其是我国青藏高原地区,融合遥感资料的陆面模式模拟可以获得高时空分辨率的资料。研究制作了新的地表植被功能型融合数据(MVEG),然后利用最新的高时空分辨率的中国气象局陆面数据同化系统HRCLDAS-V1. 0(1 km,1 h)驱动CLM模式对青藏高原2015年10 cm的土壤温度开展了模拟研究。结果表明,HRCLDAS-V1. 0的大气强迫数据(1 km,1 h)显著降低了模式模拟的误差,MVEG可以改善对极值的模拟,并使土壤温度空间分布较为合理。CLDAS/CLM(6 km,1 h)模拟值整体比观测值偏高1℃左右,HRCLDAS/CLM(1 km,1 h)有所改进,模拟的土壤温度年平均偏差绝对值和均方根误差分别降低0. 82和0. 18℃。HR-MVEG/CLM(1 km,1 h,同时改进了植被功能型)的模拟值最接近观测值,年平均均方根误差减小0. 27℃,且可以体现出土壤温度空间分布的细节特征。  相似文献   

17.
利用2010年5月25日-12月31日玛曲高寒草原的气象观测资料和陆面过程模式(CLM4.0)对玛曲高寒草原陆面过程进行了数值模拟。通过评估模式的模拟性能、模式对含砂量的敏感程度以及模式土壤水分传输方案改进对青藏高原地区陆面过程模拟的影响,发现CLM4.0模式能较好地再现观测站土壤温、湿度、地表辐射、湍流通量等的变化趋势,但土壤温度模拟偏低,感热通量模拟偏大;含砂量增多会减弱土壤的持水能力,使得夏季感热通量增大而潜热通量减小;CLM4.0模式中新引入的有机质对土壤温、湿度模拟均有重要影响,Richards方程和径流计算的修改则对土壤含水量模拟影响较大,这对其他陆面模式的改进具有一定的指导意义。  相似文献   

18.
利用NCAR公用陆面模式CLM3(Common Land Model 3),以1979—2003年NCEP/DOE再分析资料(Reanalysis-2)作为外界强迫,对在分辨率为0.5°纬度×0.5°经度下中国区域进行独立(off-line)模拟试验,并分析了土壤湿度对全球变暖的响应。模拟结果显示:土壤湿度随深度的增加调整(Spin-up)到稳态时间加长,最长可高达20年,这说明模式陆面过程对土壤初始状态的敏感性。模拟结果与台站实测资料及NCEP再分析资料输出的土壤湿度的对比表明,季节与年际变化及其空间分布基本一致。我们的结果还显示,随着近年来气候逐渐变暖,包括中国北方(30°N以北)在内的东亚北部地区夏季土壤湿度有逐渐减少趋势,最多减少15(mm3.mm-3).(100a)-1。  相似文献   

19.
为了检验耦合了CLM4.5的区域气候模式RegCM4.7在加入砾石参数后对青藏高原土壤能量水分输送长期的模拟效果,因此选择青藏高原阿里站、那曲站、玛多站的观测数据和中国全球陆面再分析40年产品(CRA/Land)-逐日产品(陆面产品)对模式的模拟效果进行检验。结果表明:土壤温度的模拟效果较好,并且土壤深层较浅层相关系数更高,含砾石数据与再分析数据的偏差更小,多年数据的平均变化趋势更加统一;相较于土壤温度,土壤湿度的模拟效果稍差,尤其是在青藏高原中部,但是在青藏高原东部与西南部,模拟效果有较大提升,与再分析数据的偏差明显减小。通过连续多年的模拟发现,模式的模拟效果并未随着参数化方案的优化而逐年提升,而是在一定范围内波动,且每一年的模拟效果都较原模式在相关系数及均方根误差方面有所提升。  相似文献   

20.
利用最新的高时空分辨率(1 km、1 h)的中国气象局高分辨率陆面数据同化系统(HRCLDAS-V1.0)大气近地面强迫资料,驱动由NCAR发展的通用陆面模式(CLM),对青藏高原地区2015年1月1日至9月30日的土壤湿度开展了模拟研究。结果表明模拟得到的高时空分辨率(1 km、1 h)土壤湿度能够体现出青藏高原地区从东南向西北逐渐变低的空间分布特征,较好地表现出各层土壤湿度的时间变化特征,6~9月土壤湿度波动较大,1~5月波动较平缓,上层土壤湿度变幅较大,深层变化较平缓。0~5 cm、0~10 cm和10~40 cm深度土壤湿度模拟结果与观测值的相关系数均在0.8以上,其中0~5 cm土层的相关系数达到0.92,各层土壤湿度观测值与模拟值的均方根误差变化则相反,3个土层土壤湿度模拟结果与观测值的偏差均小于0.04 mm3 mm-3,但模式对于研究时段土壤湿度变化的低值有高估现象,且模拟能力随着土层深度的加深而减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号