首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

2.
Agua Rica (27°26′S–66°16′O) is a world class Cu–Au–Mo deposit located in Catamarca, Argentina. In the E–W 6969400 section examined, the Seca Norte and the Trampeadero porphyries that have intruded the metasedimentary rock are cut by interfingered igneous and hydrothermal heterolithic and monolithic breccias, and sandy dikes. Relic biotite and K-feldspar of the early potassic alteration (370° to > 550 °C) with Cu (Mo–Au) mineralization are locally preserved and encapsulated in a widespread, white mica + quartz + rutile or anatase halo (phyllic alteration) with pyrite + covellite that suggests fluids with temperatures ≤ 360 °C and high f(S2). The Trampeadero porphyry and the surrounding metasedimentary rock with phyllic alteration have molybdenite in stringers and B-type quartz veinlets and the highest Mo grades (> 1000 ppm).Multistage advanced argillic alteration overprinted the earlier stages. Early andalusite ± pyrite ± quartz is preserved in the roots of the argillic halo rimmed by an alumina–silica material and white micas. This alteration assemblage is considered to have been formed at temperatures ≥ 375 °C from condensed magmatic vapor. At higher levels, pyrophyllite replaces muscovite and illite in clasts of hydrothermal breccias in the center and east sector of the study section, suggesting temperatures of 280 to 360 °C. Clasts of vuggy silica in the uppermost levels of the central breccia, indicates that at lower temperatures (< 250 °C), fluids reached very low pH (pH < 2). In this early stage of the advanced argillic alteration, hydrothermal fluids seem to have not precipitated sulfides or sulfosalts.Hydrothermal brecciation was concurrent with fluid exsolution (↑? V), which precipitated intermediate-temperature advanced argillic alunite (svanbergite + woodhouseite) ± diaspore ± zunyite as breccia cement along with abundant covellite + pyrite + enargite ± native sulfur ± kuramite at intermediate depths and in lateral transitional zones to unbrecciated rocks. This mineral assemblage indicates temperatures near 300 °C, oxidized and silica-undersaturated hydrothermal fluids with high sulfur fugacity to prevent gold precipitation. Multiple generations of pyrite, emplectite, colusite, Pb- and Bi-bearing sulfosalts, and native sulfur with Au and Ag, accompanied by alunite introduction in the upper level breccias, probably occurred at lower temperatures, but still high sulfur and oxygen activity. An independent Zn and Pb (as galena) mineralization stage locally coincides with Au–Ag and sulfosalts, and advanced at depth, controlled by fractures and overprinting much of the previous mineralization. A later paragenesis of veinlets of alunite + woodhouseite + svanvergite + pyrite ± enargite that cut the phyllic halo suggests temperatures ~ 250 °C and without woodhouseite + svanvergite, temperatures ~ 200 °C. Kaolinite occurs in the phyllic halo as a late mineral in clots and in veinlets thus, in this zone, the fluid had cooled enough for its formation.  相似文献   

3.
Visible near infrared and shortwave infrared (VNIR-SWIR, 350 to 2500 nm) reflectance spectra obtained from an analytical spectral device (ASD) have been used to define alteration zones adjacent to porphyry copper deposits (PCDs), in the central part of Kerman magmatic arc, SE Iran. The spectral analysis identified sericite, illite, halloysite, montmorillonite, dickite, kaolinite, pyrophyllite, biotite, chlorite, epidote, calcite, jarosite, and iron oxyhydroxides (e.g. hematite, goethite) of hydrothermal and supergene origin. Identified alteration zones are classified into six principal types namely phyllic, phyllic/propylitic, propylitic, potassic, argillic and advanced argillic. The iron oxide minerals in the oxidized zone were also identified using spectral analysis. Results of spectral analyses of samples are consistent with mineralogical data obtained from X-ray diffraction (XRD) and petrographic studies. Spectroscopic studies by ASD demonstrate that this tool is very useful for semi-quantitative and cost effective identification of different types of alteration mineral assemblages. Furthermore, it can provide a valuable tool for evaluating aerial distribution of alteration minerals while coupled with remote sensing data analysis.  相似文献   

4.
A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ≥90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ≥66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ± 0.08 Ma.Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has δ18O values of 21.7 to 22.0‰ and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3‰, 12.5 to 14.0‰, and 8.6 to 11.9‰, respectively. δ18O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9‰. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65°C for the argillic zone, 85 to 125°C for the propylitic zone, 110 to 210°C for the silicic zone, and 145 to 225°C for the sericitic zone. Fluid inclusion data and calculated δ18Owater values indicate that hydrothermal fluids were seawater dominated.Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone involved the most extensive loss of chemical species, especially Si. Systematic gains in Mg occur in all alteration zones as a result of I-S clay mineral formation, and systematic losses of Na, Ca, and K occur in most zones. With the exception of Ca, calculations of mass transfer associated with hydrothermal alteration on Ponza agree with chemical fluxes observed in laboratory experiments involving hydrothermal reactions of rhyolite and seawater. The anomalous Ca loss at Ponza may be due to hydrothermal formation of anhydrite and later low-temperature dissolution. On the basis of Mg enrichments derived from circulating seawater, we estimate the following minimum water/rock ratios: 9, 3, 6, and 9 for the argillic, propylitic, silicic, and sericitic zones, respectively. Hydrothermal fluid pH for the propylitic and silicic zones was neutral to slightly basic and relatively acidic for the sericitic zone as a result of condensation of carbonic and perhaps other acids.  相似文献   

5.

Gold mineralisation at the Dobroyde prospect in central New South Wales is hosted by a zoned alteration system characterised by peripheral propylitic alteration, grading inwards through argillic and advanced argillic alteration to a siliceous altered core. Overprinting textures indicate that propylitic, argillic, advanced argillic and siliceous assemblages were successively superimposed on each other. Au grades between 0.3–0.8 ppm are associated with siliceous alteration and cross‐cutting pyrite veinlets. Higher Au grades are associated with barite veins that cut the pyrite veinlets. Native Au, native Te, Au, Pb and Hg tellurides, Pb selenide, chalcopyrite, Zn‐sphalerite and tennantite‐tetrahedrite occur in the barite veins. Microscopic pyrophyllite shears cut the barite veins. The location of the Dobroyde prospect, the orientation of its internal alteration zonation and the orientation of auriferous barite veins in the core of the prospect are controlled by a 330°‐striking fault. Movement on this fault, synchronous with hydrothermal activity, at some time between the Late Ordovician and mid‐Devonian controlled the development of successive phases of brecciation, siliceous alteration, pyrite and later barite‐Au veining in the prospect core. The restricted distribution of auriferous barite veins within the siliceous altered core of the prospect is inferred to be controlled by the relatively brittle rheology of this assemblage during deformation, and its location on the fault that formed the main hydrothermal fluid conduit. Alteration zones distal from this fault remain unmineralised. The Dobroyde prospect may be a product of the same Early Devonian metallogenic epoch as the paragenetically similar Temora and Peak Hill deposits. All three deposits/prospects appear to be localised in splays of either the Gilmore Fault Zone or the Parkes Thrust.  相似文献   

6.
The Darrehzar porphyry Cu-Mo deposit is located in Southwestern Iran (~70 km southwest of Kerman City). The porphyries occur as Tertiary quartz-monzonite stocks and dikes, ranging in composition from microdiorite to diorite and granodiorite. The Darrehzar stock is highly altered, and even in the outermost part of the intrusion, it is not possible to find completely fresh rock. Surface weathering was developing ferrous Fe-rich lithologic units in leached zone and concentrated copper minerals in supergene zone. Unlike eastern areas which do not account for deep faults, the supergene zone is well developed in western areas with maximum of 118 m thickness. Hydrothermal alteration and mineralization at Darrehzar are centered on the stock and were broadly synchronous with its emplacement. Early hydrothermal alteration was dominantly potassic and propylitic, and was followed by later phyllic and argillic alteration. The hydrothermal system involved both magmatic and meteoric water and boiled extensively. Copper mineralization was accompanied by both potassic and phyllic alteration. Four main vein groups have been identified: (I) quartz?+?pyrite?±?molybdenite?±?anhydrite?±?K-feldspar?±?chalcopyrite?±?bornite?±?Cu and Fe oxidic minerals (peripheral); (II) quartz?+?chalcopyrite?+?pyrite?+?molybdenite; (III) quartz?+?pyrite?±?calcite?±?chalcopyrite?±?anhydrite (gypsum); and (IV) quartz or calcite, gypsum or ± pyrite. Based on abundance, nature, and phases number observed at room temperature, three types of fluid inclusions are typically observed in these veins: (1) vapor-rich, (2) liquid-rich, and (3) multi-phase. Early hydrothermal alteration was caused by high temperature, high salinity orthomagmatic fluid and produced a potassic assemblage. Phyllitic alteration was caused by high salinity and lower temperature orthomagmatic fluid. Magmatic and meteoric water mixture was developed in the peripheral part of the stock and caused propylitic alteration which is attributed to a liquid-rich, lower temperature.  相似文献   

7.
A widespread, intense hydrothermal alteration zone has developed in the Cretaceous Saplica volcanics as a result of the intrusion of Late Cretaceous-Paleocene granitoids. The propylitic, phyllitic (sericitic), and argillic alteration along with hematite, silica polymorphs, and two types of tourmaline mineralization developed under a wide range of Eh and pH conditions.

Alunite, kaolinite, and silica are abundant in the argillic alteration, whereas sericite dominates in the phyllic alteration. Most of the major alunite deposits are located along the periphery of the Saplica volcanic rocks and in addition contain alunite, kaolinite + quartz ± opal ± cristobalite. Illite and pyrite, barite, and gypsum also occur in small amounts.

Major and trace elements are concentrated in, or were leached from, the volcanic rocks, depending upon the alteration types. In general, Al + K and Mg + Ca + Fe were enriched in the alunitic + sericitic and propylitic alteration types, respectively. On the other hand, Ca, Mg, and Fe were leached during argillic alteration, and Fe was concentrated in hematite formation. Strong leaching of Na was determined for alteration types. Silica generally decreased in argillitic (kaolinitic and alunitic) alteration zones. Most trace elements were mobile during hydrothermal alteration. Y, Sc, Mo, Cr, Co, Ni, and Zn tend to be mobile in acid aqueous systems, and thus are nearly absent in these alunitic alteration zones. In the surrounding kaolinitic envelope, these elements are present at background (average) or slightly higher concentrations. Rb and Sr contents are high in the alunitic and kaolinitic zones. Barium is highest near the alunite zone because of the relative insolubility of barite in acidic solutions. Pb and Cu contents increase in the propylitic zone. Such hydrothermal alteration zones can be used effectively in the exploration and evaluation of mineral resources of the eastern Black Sea region.  相似文献   

8.
Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite-biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz phenocrysts trapped a lower salinity (3-20 wt% NaCl equiv.), moderate temperature (300-400 °C) fluid that may have caused the phyllic alteration. Fluid inclusions in the quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins trapped dilute (1-3 wt% NaCl equiv.) fluids at 250 to 320 °C, at a minimum depth of 1.0 km under hydrostatic conditions. Oxygen isotopic compositions of the fluids that deposited the quartz stockwork veins fall within the 6 to 10‰ range of magmatic waters, whereas the quartz-sulphide-gold-anhydrite veins have lower '18Owater values (-0.6 to 0.5‰), reflecting a local meteoric water (-6‰) influence. A '18O versus 'D plot shows a trend from magmatic water in the quartz stockwork veins to a near meteoric water composition in kaolinite from the advanced argillic alteration. Data points for pyrophyllite and the quartz-sulphide-gold-anhydrite veins lie about midway between the magmatic and meteoric water end-member compositions. The spatial association between porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins suggests that they are all genetically part of the same hydrothermal system. This is consistent with K-Ar dates of 11.6-10.7 Ma for the intrusive porphyry, for alunite in the advanced argillic alteration, and for sericite selvages from quartz-gold veins in the Thames district.  相似文献   

9.
The rhyolitic dome in the Rangan area has been subjected to hydrothermal alterations by two different systems, (1) A fossil magmatic–hydrothermal system with a powerful thermal engine of a deep monzodioritic magma, (2) An active hydrothermal system dominated by meteoric water. Based on mineralogical and geochemical studies, three different alteration facies have been identified (phyllic, advanced argillic and silicic) with notable differences in REE and other trace elements behaviour. In the phyllic alteration zone with assemblage minerals such as sericite, pyrite, quartz, kaolinite, LREE are relatively depleted whereas HREE are enriched. The advanced argillic zone is identified by the presence of alunite–jarosite and pyrophyllite as well as immobility of LREE and depletion in HREE. In the silicic zone, most of LREE are depleted but HREE patterns are unchanged compared to their fresh rock equivalents. All the REE fractionation ratios (La/Yb)cn, (La/Sm)cn, (Tb/Yb)cn, (Ce/Ce1)cn and (Eu/Eu1)cn are low in the phyllic altered facies. (Eu/Eu1)cn in both advanced and silicic facies is low too. In all alteration zones, high field strength elements (HFSE) (e.g. Ti, Zr, Nb) are depleted whereas transition elements (e.g. V, Cr, Co, Ni, Fe) are enriched. Geochemically speaking, trace and rare earth elements behave highly selective in different facies.  相似文献   

10.
At Rodalquilar gold mineralization is found in Late Tertiary volcanic rocks of the Sierra del Cabo de Gata and is related to a caldera collapse. Radial and concentric faults were preferred sites for gold deposition. Hydrothermal activity produced a specific alteration zoning around gold-bearing vein structures, grading from an innermost advanced argillic via an argillic into a more regionally developed propylitic zone. Advanced argillic alteration with silica, pyrophyllite, alunite, and kaolinite extends down to several hundred m indicating a hypogene origin. High-grade gold mineralization in vein structures is confined to the near-surface part of the advanced argillic alteration. Fine-grained gold is associated with hematite, jarosite, limonite, or silica. At a depth of about 120 m, the oxidic ore assemblage grades into sulfide mineralization with pyrite and minor chalcopyrite, covellite, bornite, enargite, and tennantite. Two types of fluids from different sources were involved in the hydrothermal system. Overpressured and hypersaline fluids of presumably magmatic origin initiated the hydrothermal system. Subsequent hydrothermal processes were characterized by the influx of low-salinity solutions of probable marine origin and by interactions between both fluids. Deep-reaching, advanced argillic alteration formed from high-salinity fluids with 20–30 equiv. wt% NaCl at about 225°C. Near-surface gold precipitation and silification are related to fluids with temperatures of about 175°C and 3–4 equiv. wt% NaCl. Gold was transported as Au(HS) 2 , and precipitation resulted from boiling with a concomitant decrease in temperature, pressure, and pH and an increase in fO2. All features of the Rodalquilar gold deposit reveal a close relationship to acid-sulfate-type epithermal gold mineralization.  相似文献   

11.
Abstract: The Milyang pyrophyllite deposit, which is embedded in the Late Cretaceous Yuchon Group of the Kyongsang Supergroup, is one of the largest hydrothermal clay deposits in the Kyongsang basin, southeast Korea. Host rocks of the deposit are porphyritic andesite lava and minor andesitic lapilli tuff. In the Milyang district, a hydrothermally altered zone is about 2 × 3 km in extent; we can recognize the concentric arrangement of advanced argillic, propylitic, and sericitic alteration zones from the central to peripheral parts of the zone. The Milyang pyrophyllite deposit forms a part of the advanced argillic alteration zone. The Milyang pyrophyllite deposit is subdivided into the following four zones based on mineral assemblages: the pyrophyllite zones 1, 2, 3, and the silicified zone. The pyrophyllite zone 1, which occupies the central part of the deposit, comprises mainly pyrophyllite, kaolinite, and diaspore without quartz. Diaspore nodules often concentrate in beds 40–50 cm thick. Andalusite, dumortierite, and tourmaline locally occur as network veins, crack‐filler, or small spherulitic spots. The Al2O3 content of the ore ranges from 27 to 36 wt%. The pyrophyllite zone 2, which constitutes a major part of the deposit, comprises mainly pyrophyllite, kaolinite, and quartz. The Al2O3 content of the ore ranges from 15 to 24 wt%. The pyro‐phyllite zone 3 is the hematite‐rich marginal facies of the deposit. The silicified zone, which occurs as beds and septa, is mostly composed of quartz with minor pyrophyllite and kaolinite; the SiO2 contents range from 79 to 90 wt%. Comparing chemical compositions of the high‐Al ores with those of unaltered host andesite, the Fe, Ca, alkalis, HFSE, and HREE contents are significantly depleted, whereas S, B, As, Sr, and LREE are enriched. The hydrothermal alteration of the Milyang pyrophyllite deposit can be classified into the following four stages: 1) extensive sericitic and propylitic alteration, 2) medium‐temperature (200–250°C) advanced argillic alteration, 3) high‐temperature (250–350°C or more) advanced argillic alteration, and 4) retrograde low‐temperature alteration. The heat and some volatile components such as B and S would be derived from the Pulguksa Granite intruded underneath the deposit.  相似文献   

12.
The Haenam volcanic field was formed in the southern part of the Korean peninsula by the climactic igneous activity of the Late Cretaceous. The volcanic field hosts more than nine hydrothermal clay deposits and two epithermal Au–Ag deposits. This study focuses on the relationship between hydrothermal clay alteration and epithermal Au–Ag mineralization based on the geology, alteration mineralogy, geochronology, and mineralization characteristics.These clay and epithermal Au–Ag deposits are interpreted to have formed by the same hydrothermal event which produced two distinct types of mineral systems: 1) Au-dominant epithermal Au–Ag deposit and 2) clay-dominant hydrothermal clay deposit. The two types of mineral systems show a close genetic relationship as suggested by their temporal and spatial relationships. The Seongsan hydrothermal system progressively evolved from a low-intermediate sulfidation epithermal system with Au–Ag mineralization and phyllic alteration to an acid–sulfate high-sulfidation system with Au–Ag mineralization and/or barren advanced argillic/argillic alteration. The Seongsan system evolved during post volcanic hydrothermal activity for at least 10 Ma in the Campanian stage of the late Cretaceous.The Seongsan hydrothermal system shows the rare and unique occurrence of superimposed high to low (intermediate) sulfidation episodes, which persisted for about 10 Ma.  相似文献   

13.
排山楼地区变质作用的主要因素为热量(约600℃)、化学活动流体和压力(地压应力和挤压应力).地壳震动是造成本区造山作用的原因.这种现象与板块构造理论相吻合.矿物分异作用序列为:首先,受火成侵入活动的影响,产生片麻岩、糜棱岩、花岗岩;然后,经历地压和挤压的作用;最后,发生各种类型蚀变作用,包括绢云母化、硅化、碳酸岩化、方解石化、绿泥石化、脱氧作用等.排山楼金矿成矿模式可概述如下:a)成矿作用为热液蚀变型,矿床赋存在太古宙变质岩大型韧性剪切带中;b)矿体产于裂隙中;c)矿体形态与岩脉和细脉形态一致;d)围岩经历了强烈的蚀变作用;e)黄铁矿是最重要的富金矿物,热液流体来源于侵入体,在流经破碎带和裂隙带后,在围岩中沉积黄铁矿.主要岩石类型有花岗岩、角闪岩、片岩、片麻岩和糜棱岩.区内广泛发育青盘岩化、泥化和绢云母化蚀变作用.主要蚀变矿物有石英、黄铁矿、白云母、绢云母、绿帘石、黑云母、微斜长石、方解石、角闪石、云母和锆石.矿体主要赋存在花岗岩和片麻岩中.主要蚀变作用为绢云母化、黑云母化、硅化和方解石化.蚀变过程中,铁氧化物(铁帽、云母)覆于贫硫酸盐矿石表面.蚀变类型有青盘岩化(黏土)、泥化和绢云母化.通常,氧化铁与黏土矿物的混合影响卫星影像中光谱的反射.利用遥感技术方法,适于这类矿床的进一步预测研究.  相似文献   

14.
排山楼地区变质作用的主要因素为热量(约600℃)、化学活动流体和压力(地压应力和挤压应力).地壳震动是造成本区造山作用的原因.这种现象与板块构造理论相吻合.矿物分异作用序列为:首先,受火成侵入活动的影响,产生片麻岩、糜棱岩、花岗岩;然后,经历地压和挤压的作用;最后,发生各种类型蚀变作用,包括绢云母化、硅化、碳酸岩化、方解石化、绿泥石化、脱氧作用等.排山楼金矿成矿模式可概述如下:a)成矿作用为热液蚀变型,矿床赋存在太古宙变质岩大型韧性剪切带中;b)矿体产于裂隙中;c)矿体形态与岩脉和细脉形态一致;d)围岩经历了强烈的蚀变作用;e)黄铁矿是最重要的富金矿物,热液流体来源于侵入体,在流经破碎带和裂隙带后,在围岩中沉积黄铁矿.主要岩石类型有花岗岩、角闪岩、片岩、片麻岩和糜棱岩.区内广泛发育青盘岩化、泥化和绢云母化蚀变作用.主要蚀变矿物有石英、黄铁矿、白云母、绢云母、绿帘石、黑云母、微斜长石、方解石、角闪石、云母和锆石.矿体主要赋存在花岗岩和片麻岩中.主要蚀变作用为绢云母化、黑云母化、硅化和方解石化.蚀变过程中,铁氧化物(铁帽、云母)覆于贫硫酸盐矿石表面.蚀变类型有青盘岩化(黏土)、泥化和绢云母化.通常,氧化铁与黏土矿物的混合影响卫星影像中光谱的反射.利用遥感技术方法,适于这类矿床的进一步预测研究.  相似文献   

15.
文章基于ASTER和Landsat-8OLI两种多光谱遥感数据,采用高光谱遥感技术混合调谐滤波(MTMF)、多光谱遥感技术相对吸收深度(RBD)、波段比值(BR)等方法提取了西藏多龙矿集区地堡那木岗斑岩型铜金矿床地表的蚀变矿物组合。其结果表明,基于ASTER数据的MTMF技术可将Al—OH矿物划分为白云母+高岭石/蒙脱石和地开石+蒙脱石+累托石两种组合,进一步可细分出斑岩型矿床多光谱遥感地表蚀变矿物组合并呈现出良好的分带特征:地堡那木岗铜金矿床自内而外依次为白云母+高岭石/蒙脱石→地开石+蒙脱石+累托石→Mg—OH类矿物组合,分别对应于前人野外调查所勘测到的的绢英岩化带+泥化带→泥化带→青磐岩化带,Fe3+矿物叠加于绢英岩化带、泥化带及其两带的叠合部位。所提取的多光谱遥感蚀变矿物组合分带特征对该区斑岩型铜金矿床的勘查工作提供了重要的遥感线索,对定位找矿靶区具有指导意义。  相似文献   

16.
Chol-qeshlaghi altered area lies in the northwestern part of the post-collisional Urumieh-Dokhtar magmatic arc, NW Iran. Pervasive silicic, argillic, phyllic and propylitic altered zones appears to be intimately affiliated to the fluids derivative of upper Oligocene Khankandi granodiorite. This paper is dedicated to the identification of geochemical characteristics of hydrothermal alterations, focusing on the determination of the mass gains and losses of REEs, to gain significant insights regarding the chemical exchanges prevailed between the host rocks and hydrothermal fluids. The low pH and high activity of SO_4~(-2) ligands in silicic alteration fluids, resulting in depletion of entire REEs. Decreasing of LREEs appeared in argillic zone may attributed to reduce in adsorption ability of clay minerals in low pH; whereas HREEs enrichment in phyllic zone was inclined to put it down to the abundance of sericite(± Fe oxides). A significant reduction of Eu/Eu* ratio in silicic zone can be attributed to negligible sulfides and clay minerals as some effective agents in adsorption of released Eu~(+2). Factors such as changes in pH, the abundance of absorptive neomorph mineral phases, activity of ligands play an important role in controlling the distribution and concentration of REEs in Chol-qeshlaghi alteration system.  相似文献   

17.
Abstract: Hydrothermal systems related to magmatic intrusions in the Jozankei-Zenibako district, southwest Hokkaido are examined, based on field observations, K-Ar ages, and alteration mineral assemblages. The study reveals five major magmat–ic–hydrothermal systems of Late Miocene in age, comprising Ogawa (9. 7 Ma), Jozankei (9. 5–9. 0 Ma), Otarunaigawa (8. 7 Ma), Asarigawa (8. 8 and 6. 7 Ma) and Hariusu (6. 7 Ma). The Ogawa system is related to granodiorite, and the Jozankei, Otarunaigawa and Asarigawa systems are related to quartz porphyry.
The Ogawa system includes potassic, sericitic, propylitic and advanced argillic alteration as well as base-metal mineralization, represented by the Toyotomi deposit. The Jozankei and Otarunaigawa systems lack significant potassic alteration, and are accompanied by sericitic and propylitic alteration. The Otarunaigawa system is associated with base-metal mineralization at Toyohiro and Inatoyo. The Asarigawa and Hariusu systems include advanced argillic and argillic alteration, as well as iron sulfide deposits. The presence of potassic alteration only in the Ogawa system is ascribed to deeper emplacement (˜3 km from the surface) of the intrusive magma. These systems formed in terrestrial environments that existed from ca. 11 Ma to 8. 5 Ma and after 7. 5 Ma in the district.
Age–data compilation shows that the major advanced argillic alteration events in southwest Hokkaido, including those in the Jozankei-Zenibako district, formed during the periods from 9. 7–6. 5 Ma and 3. 5–1. 5 Ma. These periods correspond to the timing of normal subduction of the Pacific plate beneath the Northeast Japan arc. Normal, in contrast to oblique, plate subduction is characterized by andesitic, polygenetic volcanism and associated advanced argillic alteration.  相似文献   

18.
The Great Barrier Island subvolcanic silver-gold deposits comprise a number of essentially east striking, quartz filled, mineralized fissures, which transect andesitic volcanics and an unconformably overlying, bedded sinter deposit of upper Tertiary to Quaternary age. Wall rock alteration is characterized by a propylitic assemblage in the least altered andesite, with argillic assemblages and silicification developed in close proximity to the veins. Some twentyfive hypogene and supergene ore minerals have been recognized, of which pyrite is the most common and finely disseminated pyrargyrite constitutes the main source of silver. The mineral assemblage is dominantly hypogene with minor supergene alteration occurring at surface exposures, and includes mainly sulfides, selenides and native metals. Fineness of electrum derived from two electron microprobe analyses is approximately 500, while total silver to gold ratio from a number of bulk chemical analyses is 30:1. Maximum depth of deposition is estimated to be in the order of 500 m and for some surface exposures 100 m. The mineralization is regarded as subvolcanic and along with other hydrothermal fissure deposits of Hauraki Province is considered to be of Pliocene-Pleistocene age, and hence is believed to be associated with the late phase extrusions and intrusions of acid magma in the volcanic belt.  相似文献   

19.
岗岔—克莫金矿区位于西秦岭北缘夏河—合作成矿带,具浅成低温热液型矿床特征,初步显示深部可能具有斑岩成矿系统存在。利用短波红外光谱矿物分析技术对岗岔—克莫金矿区蚀变岩特征的研究表明,矿区内发育的蚀变矿物主要有白云母、伊利石、蒙脱石、高岭石、地开石、绿泥石、绿帘石和次生石英等。近矿蚀变类型主要为绢英岩化。矿区内以下家门沟口为中心向外依次发育了中心带(绢英岩化带)、过渡带(泥化带)和外围带(青磐岩化带)。此外,伊利石结晶度以下家门沟口为中心向外具有明显的降低趋势。研究结果指示下家门沟口可能是矿区的热液活动中心。  相似文献   

20.
杨梅珍 《地质与勘探》2011,47(6):1059-1066
经过详细的野外勘查和热液蚀变、矿物标型特征研究,并结合稳定同位素研究资料综合分析,首次提出皇城山银矿床为浅成低温热液矿床中的高硫化型矿床。该矿床以发育多孔状石英岩的硅化带和高级泥化带为特征,组成矿石的金属硫化物以黄铁矿、铜蓝和辉铜矿等高硫金属硫化物组合为标志。矿石中闪锌矿的低Fe高T1和强内反射显示低温闪锌矿标型特征。...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号