首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
We report the calcite twinning strain results of a traverse across the Grenville orogen from Parry Sound, Ontario (NW) to Ft. Ann, New York (SE), including the younger, adjacent Ordovician Taconic allochthon. Fifty four carbonates (marbles, calcite veins, Ordovician limestone) were collected resulting in 68 strain analyses on mechanically twinned calcite (n = 2337 grains) across the Central Gneiss Belt (CGB; 3 samples), the Central Metasedimentary Belt (CMB; 27 samples), the Central Granulite Terrane (CGT; Adirondack's; 13 samples) and the Ottawan Orogenic Lid (OOL; 11 samples). Twinning strains in the greenschist-grade OOL marbles preserve N–S shortening and U-Pb titanite ages (~1150 Ma; n = 4) document these marbles formed during the Shawinigan (1190–1140 Ma) part of the Grenville orogen. From northwest to southeast, the Ottawan (1095–1020 Ma) twinning strain is dominantly a layer-parallel shortening fabric oriented N–S (Parry Sound), then becomes parallel to the Grenville thrust direction (NW–SE) across the CMB to the Adirondack Highlands where the sub-horizontal shortening strain becomes margin-parallel (SW–NE). Within the regional sample suite there are two areas studied in detail, the Bancroft shear zone (n = 11) and a roadcut on the southeast side of the Adirondack Mountains (Ft. Ann, NY; n = 8). Marbles from the Bancroft shear zone contain calcite grains with 2 sets of twin lamellae (e1 and e2). The better-developed e1 sets (n = 406) record a horizontal fabric oriented NW–SE whereas the younger e2 lamellae (n = 146) preserve a margin-parallel (SW–NE) horizontal fabric. Both the e1 and e2 strains record an overprint vertical shortening strain (NEV), perhaps related to extensional orogenic collapse. We also report an Ottawan orogen-aged granoblastic mylonite (1093 Ma, U-Pb zircon; 1102 Ma Ar-Ar biotite) in the Keweenaw thrust hanging wall 500 km inboard of the Grenville front and interpret the relations of Grenville-Keweenaw far-field dynamics.  相似文献   

2.
In the Vizianagaram area (E 83°29.442′; N 18°5.418′) of the Eastern Ghats Belt, India, a suite of graphite‐bearing calc‐silicate granulites, veined by syenitic rocks, developed wollastonite‐rich veins at 6–7 kbar and > 850 °C. During subsequent near‐isobaric cooling wollastonite was replaced by calcite + quartz and a graphic intergrowth of fluorite + quartz ± clinopyroxene. Titanite with variable Al and F contents is present throughout the rock. Combining the compositional variation of titanite and recent experimental data, it is demonstrated that the mineral assemblage, the composition of coexisting fluids and the mobility of Al exert a far greater control on the composition of titanite than pressure, temperature or the whole rock composition. Thermodynamically computed isothermal–isobaric logfO2– logfCO2 and logfF2– logfO2 grids in the systems Ca–Fe–Si–O–F (CISOF; calcite‐free) and Ca–Fe–Si–O–F–C–H (CISOFV; calcite‐present) demonstrate the influence of bulk rock and fluid compositions on the stability of the fluorite‐bearing assemblages in diverse geological environments and resolve the problem of the stability of titanite in fayalite + fluorite‐bearing rocks in the Adirondacks. The mineralogy of the studied rocks and the topological constraints tightly fix the logfO2, logfF2 and logfCO2 at ?15.8, ?30.6 and 4.1, respectively, at 6.5 kbar and c. 730 °C. Because of the similarity in the P–T conditions, the compositions of pore fluids in the fluorite‐bearing assemblages of the Adirondacks and the Eastern Ghats Belt have been compared.  相似文献   

3.
Trace element distribution in titanite overgrowths on rutile has been investigated experimentally at 600?°C, 400?MPa and fO2 near NiNiO buffer. Compositionally homogenous Cr- or Nb-doped synthetic rutile single crystals or Nb-containing natural rutile crystals were the source of Cr, Nb and Ti to synthesize titanite using the double-capsule technique. All element exchange with the source of Si, Ca and Al occurred via a NaCl–H2O fluid. Titanite forms quickly and exclusively around the rutile crystals. The titanite overgrowth separates rutile from the bulk fluid, and all elements from rutile dissolution have to pass through the titanite rim. Trace element concentrations in titanite show a considerable scatter in experiments with and without Al, although the average concentrations of Cr or Nb of titanite around compositionally homogeneous synthetic rutile approach the expected values for closed system conditions. Variability of Al with Cr or Nb in the titanite is not correlated. The Al zoning is irregular and patchy, and also the distribution of trace elements does not show systematic trends in the spatial distribution. In experiments using zoned natural rutile, the concentrations of Nb in titanite are related to the Nb zoning in rutile, but the contents also vary unsystematically. Under the controlled conditions of the experiment, the explanation for the strongly irregular spatial distribution is most likely due to variations in elemental concentrations during transport from the rutile along the titanite grain boundaries. The transport pathway is complex because grain boundary migration is important during titanite growth. Such irregular element distribution is also found in a natural sample of titanite overgrowth on rutile from an eclogite with retrograde overprint in the amphibolite facies. Transport of Ti and trace elements was focused on grain boundaries and shielded from the rutile as a source of these elements. We conclude that this type of zoning is not related to changes in P–T or composition in an open system, but solely controlled by transport in and through the titanite rim.  相似文献   

4.
The petrogenetic relations among Ti‐rich minerals in high‐grade metabasites is illuminated here through a detailed petrological investigation of an anatectic garnet–clinopyroxene granulite from the Grenville Province, Ontario, Canada containing rutile, titanite and ilmenite in distinct microtextural settings. Garnet porphyroblasts exhibit zoned Ti concentrations (up to 0.15 wt% TiO2 in their cores), as well as a variety of rutile inclusion types, including clusters of small, variably elongate grains and thin (≤1 μm) oriented needles. Calcite inclusions in garnet, commonly observed surrounding garnet cores containing quartz and clinozoisite, indicate the presence of evolving C–O–H fluids during garnet growth and suggest that the rutile clusters may have formed from subsequent Ti diffusion and rutile precipitation within existing fluid inclusions. Titanite forms large subhedral crystals and typically occurs where the primary garnet–clinopyroxene assemblage is in contact with leucosome containing megacrystic hornblende, silvialitic scapolite and calcic plagioclase. Many titanite crystals exhibit marginal subgrains that correspond with sharp changes in their major and trace element composition, likely related to a dissolution–precipitation or recrystallization process following primary crystallization. Clinopyroxene–ilmenite symplectite coronas surround titanite in most locations, likely forming from reaction with the hornblende‐plagioclase matrix (±fluids/melt). Integration of multi‐equilibria thermobarometry and Zr thermometry in rutile and titanite with phase equilibrium modelling allows definition of a clockwise P–T path evolving to peak pressures of ~1.5 GPa at ~750°C during garnet and rutile growth, followed by peak temperature conditions of ~1.2 GPa and ~820–880°C associated with melt‐present titanite growth, and finally cooling and decompression to regional amphibolite facies conditions (~1.0 GPa and ~750°C) associated with the formation of clinopyroxene–ilmenite symplectites surrounding titanite. P–T pseudosections calculated for the pristine (leucosome‐ and titanite ‐free) metabasite bulk composition reproduce much of the prograde phase relations, but predict rutile as the stable Ti‐rich mineral at the peak thermal conditions associated with melt‐present titanite growth. The PM(CaO) and TM(CaO) models show that bulk CaO concentrations have a significant effect on the stability ranges of titanite and rutile. Increased bulk CaO tends to stabilize titanite to higher pressure and temperature at the expense of rutile, with a ≥15% increase in CaO producing the observed titanite‐bearing assemblage at high‐P granulite facies conditions. Thus, the model results are consistent with the textural observations, which suggest that titanite stability is associated with a chemical exchange between the host metabasite and a Ca‐rich melt.  相似文献   

5.
Oscillatory zoning in low δ18O skarn garnet from the Willsboro wollastonite deposit, NE Adirondack Mts, NY, USA, preserves a record of the temporal evolution of mixing hydrothermal fluids from different sources. Garnet with oscillatory zoning are large (1–3 cm diameter) euhedral crystals that grew in formerly fluid filled cavities. They contain millimetre‐scale oscillatory zoning of varying grossular–andradite composition (XAdr = 0.13–0.36). The δ18O values of the garnet zones vary from 0.80 to 6.26‰ VSMOW and correlate with XAdr. The shape, pattern and number of garnet zones varies from crystal to crystal, as does the magnitude of the correlated chemistry changes, suggesting fluid system variability, temporal and/or spatial, over the time of garnet growth. The zones of correlated Fe content and δ18O indicate that a high Fe3+/Al, high δ18O fluid mixed with a lower Fe3+/Al and δ18O fluid. The high δ18O, Fe enriched fluids were likely magmatic fluids expelled from crystallizing anorthosite. The low δ18O fluids were meteoric in origin. These are the first skarn garnet with oscillatory zoning reported from granulite facies rocks. Geochronologic, stable isotope, petrologic and field evidence indicates that the Adirondacks are a polymetamorphic terrane, where localized contact metamorphism around shallowly intruded anorthosite was followed by a regional granulite facies overprint. The growth of these garnet in equilibrium with meteoric and magmatic fluids indicates an origin in the shallow contact aureole of the anorthosite prior to regional metamorphism. The zoning was preserved due to the slow diffusion of oxygen and cations in the large garnet and protection from deformation and recrystallization in zones of low strain in thick, rigid, garnetite layers. The garnet provide new information about the hydrothermal system adjacent to the shallowly intruded massif anorthosite that predates regional metamorphism in this geologically complex, polymetamorphic terrane.  相似文献   

6.
Hornblende from the Lone Grove Pluton, Llano Uplift, Texas, has served as an irradiation reference material in 40Ar/39Ar studies for decades. In order to evaluate the apparent age bias that currently exists between the U‐Pb and 40Ar/39Ar systems, zircon and titanite were dated by isotope dilution‐thermal ionisation mass spectrometry (ID‐TIMS) from the same rock from which the hornblende 40Ar/39Ar reference material HB3gr is derived. Zircon U‐Pb data indicate initial crystallisation at 1090.10 ± 0.16 Ma (2s), a date that is 1.7% older than the accepted K‐Ar date (1072 ± 14 Ma, 2s) for HB3gr; an offset that exceeds the typical 0.5–1% bias between the two systems, though remaining within uncertainty due to the large uncertainties in the 40K decay constant. Zircon data are presented using both EARTHTIME tracers ET535 and ET2535 and are statistically indistinguishable. Single grain titanite analyses range between 1082 ± 0.75 and 1086 ± 0.81 Ma (2s) and are interpreted to record the subsequent cooling following crystallisation at rates between 30 and 50 °C Ma?1. This is supported by the observation that hornblende 40Ar/39Ar dates corrected for decay constant bias are resolvably younger than the zircon U‐Pb date and in good agreement with titanite U‐Pb dates, permitting the conclusion that both titanite U‐Pb and hornblende 40Ar/39Ar systems provide a record of cooling.  相似文献   

7.
In situ analysis of a garnet porphyroblast from a granulite facies gneiss from Sør Rondane Mountains, East Antarctica, reveals discontinuous step‐wise zoning in phosphorus and large δ18O variations from the phosphorus‐rich core to the phosphorus‐poor rim. The gradually decreasing profile of oxygen isotope from the core (δ18O = ~15‰) to the rim (δ18O = ~11‰) suggests that the 18O/16O zoning was originally step‐wise, and modified by diffusion after the garnet rim formation at ~800°C and 0.8 GPa. Fitting of the 18O/16O data to the diffusion equation constrains a duration of the high‐T event (~800°C) to c. 0.5–40 Ma after the garnet rim formation. The low δ18O value of the garnet rim, together with the previously reported low δ18O values in metacarbonates, indicates regional infiltration, probably along a detachment fault, of low δ18O fluid/melt possibly derived from meta‐mafic to ultramafic rocks.  相似文献   

8.
Titanite can be found in rocks of wide compositional range, is reactive, growing or regrowing during metamorphic and hydrothermal events, and is generally amenable to U–Pb geochronology. Experimental evidence suggest that titanite has a closure temperature for Pb ranging from 550 to 650°C, and thus titanite dates are commonly interpreted as cooling ages. However, this view has been challenged in recent years by evidence from natural titanite which suggests the closure temperature may be significantly higher (up to 800°C). Here, we investigate titanite in an enclave of migmatitic gneiss included within a granite intrusion. The titanite crystals exhibit textural features characteristic of fluid‐mediated mass transfer processes on length scales of <100 µm. These textural features are associated with variation in both Pb concentrations and distinct U–Pb isotopic compositions. Zr‐in‐titanite thermometry indicates that modification of the titanite occurred at temperatures in excess of 840°C, in the presence of a high‐T silicate melt. The Pb concentration gradients preserved in these titanite crystals are used to determine the diffusivity of Pb in titanite under high‐T conditions. We estimate diffusivities ranging from 2 × 10?22 to 5 × 10?25 m2/s. These results are significantly lower than experimental data predict yet are consistent with other empirical data on natural titanites, suggesting that Pb diffusivity is similar to that of Sr. Thus our data challenge the wide‐held assumption that U–Pb titanite dates only reflect cooling ages.  相似文献   

9.
The relative timing of two discrete pulses of metamorphic fluid flow is constrained based on chemical zoning in several garnet crystals from Kvaløya, Troms, northern Norway. The garnet crystals measured 1–2 cm in diameter and were contained within c. 1.6 Ga, staurolite grade metasediments. Major element zoning indicates that garnet grew under normal prograde conditions in the garnet and/or staurolite zones. Timing constraints are based on comparisons between major and trace element chemical zoning, oxygen isotope (δ18O) zoning and deformational (inclusion trail) zoning in one of the garnet. We interpret at least two pulses of metamorphic fluid flow. The first pulse occurred during the syn‐tectonic growth interval. The δ18O zoning was reversed relative to ‘normal’ prograde zoning and the δ18O maximum was located within the syn‐tectonic growth zone, displaced 3–4 mm from the garnet core. The fluid might have been sourced in neighbouring calcareous pelites and may also have caused formation of an Y ring. The second (and subsequent) pulse(s) occurred during/after the post‐tectonic growth interval. δ18O was locally increased at the garnet rim, particularly where the rim was sheared. The incomplete rim was also enriched in calcium. Transport of oxygen and calcium by metamorphic fluids is well documented. Transport of Y is both problematic and poorly understood, but might have been facilitated by complexing with F and/or CO2.  相似文献   

10.
Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual‐inlet isotope‐ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were ?235.8 ± 0.7‰ and ?29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5‰. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95‐percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.  相似文献   

11.
The Whitestone Anorthosite (WSA), located in the Central Gneiss Belt of the south-western Grenville Province, Ontario, exhibits a nearly concentric metamorphic envelope characterized by an increase in modal scapolite, hornblende, epidote and garnet, developed around a core of granulite facies clinopyroxene ± orthopyroxene ± garnet meta-anorthosite. Scapolite- and hornblende-bearing assemblages develop mainly at the expense of plagioclase and pyroxene within the envelope. Stable isotopic and petrological data for scapolite-bearing mineral assemblages within meta-anorthosite constrain the source of carbon responsible for CO3-scapolite formation and the extent of fluid/rock interaction between the anorthosite and adjacent lithologies. Stable isotopic data indicate increasing δ18O and δ13C from core to margin of the meta-anorthosite and for samples from the southern extension of the WSA, where it is ductilely deformed within the Parry Sound Shear Zone (PSSZ). The average δ18OSMOW value (whole rock) for the WSA core is 6.9‰, increasing to 11.5‰ where the WSA is in tectonic contact with marble breccia. The average δ13CPBD value of scapolite in meta-anorthosite from the centre of the WSA is -3.4‰, increasing to -0.5‰ at the eastern (marble) contact. Average values of δ13C for scapolite and whole-rock δ18O for samples from the shear zone are -1.0 and 8.0‰, respectively. Marbles have average δ18O and δ13C values of 19.2 and -0.4‰, respectively. The sulphate content of texturally primary scapolite decreases from the core of the WSA (XSO4= 0.48) to the eastern contact (≤0.05). Texturally late scapolite after plagioclase and garnet tends to be CO3-rich relative to texturally primary scapolite, and some scapolite grains show zoning in the anion site with CO3-enriched rims. Scapolite composition may vary at any scale from a single grain to outcrop. The pattern of isotopic enrichment in 13C and 18O preserved in the eastern margin of the WSA is consistent with marble as the major source of fluid contributing to the formation of the metamorphic envelope. The decrease in XSO4 and increase in XCO3 in scapolite toward the margin of the WSA indicate that the volatile content was reset by, or developed from, a CO2-bearing fluid. Assuming derivation of fluid from marble, minimum fluid/rock values at the margin of the WSA range from 0.03 for the least enriched, to 0.30 for the most isotopically enriched samples. Although marble is not found in immediate contact with samples of sheared meta-anorthosite from the PSSZ, a marble source is also consistent with the C and O isotope composition and anion chemistry of scapolite within these samples.  相似文献   

12.
A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.  相似文献   

13.
Oxygen isotope ratios of quartz inclusions (QI) within garnet from granulite and amphibolite facies gneisses in the Adirondack Mountains, NY were analysed and used to determine metamorphic temperatures. Primary QI for eight of 12 samples have δ18O values significantly lower than matrix quartz (MQ). The primary QI retain δ18O values representative of thermal conditions during garnet crystallization, whereas the δ18O values of MQ were raised by diffusive exchange with other matrix minerals (e.g. mica and feldspar) during cooling. The δ18O differences between QI and MQ show that garnet (a mineral with slow diffusion of oxygen) can armour QI from isotopic exchange with surrounding matrix, even during slow cooling. These differences between δ18O in MQ and QI can further be used to test cooling rates by Fast Grain Boundary diffusion modelling. Criteria for identifying QI that preserve primary compositions and are suitable for thermometry were developed based on comparative tests. Relations between δ18O and inclusion size, distance of inclusion to host–garnet rim, core–rim zonation of individual inclusions, and presence or absence of petrological features (healed cracks in QI, inclusions in contact with garnet cracks lined by secondary minerals, and secondary minerals along the inclusion grain boundary) were investigated. In this study, 61% of QI preserve primary δ18O and 39% were associated with features that were linked to reset δ18O values. If δ18O in garnet is homogeneous and inclusions are removed, laser‐fluorination δ18O values of bulk garnet are more precise, more accurate, and best for thermometry. Intragrain δ18O(Grt) profiles measured in situ by ion microprobe show no δ18O zonation. Almandine–rich garnet (Alm60–75) from each sample was measured by laser‐fluorination mass‐spectrometry (LF‐MS) for δ18O and compared with ion microprobe measurements of δ18O in QI for thermometry. The Δ18O(Qz–Grt) values for Adirondack samples range from 2.66 to 3.24‰, corresponding to temperatures of 640–740 °C (A[Qz–Alm] = 2.71). Out of 12 samples that were used for thermometry, nine are consistent with previous estimates of peak temperature (625–800 °C) based on petrological and carbon–isotope thermometry for regional granulite and upper amphibolite facies metamorphism. The three samples that disagree with independent thermometry for peak metamorphism are from the anorthosite–mangerite–charnockite–granite suite in the central Adirondacks and yield temperatures of 640–665 °C, ~100 °C lower than previous estimates. These low temperatures could be interpreted as thermal conditions during late (post‐peak) crystallization of garnet on the retrograde path.  相似文献   

14.
Oxygen isotope ratios and rare earth element (REE) concentrations provide independent tests of competing models of injection v. anatexis for the origin of migmatites from amphibolite and granulite facies metasedimentary rocks of the Adirondack Mountains, New York. Values of δ18O and REE profiles were measured by ion microprobe in garnet–zircon pairs from 10 sample localities. Prior U–Pb SIMS dating of zircon grains indicates that inherited cores (1.7–1.2 Ga) are surrounded by overgrowths crystallized during the Grenville orogenic cycle (~1.2–1.0 Ga). Cathodoluminescence imaging records three populations of zircon: (i) featureless rounded ‘whole grains’ (interpreted as metamorphic or anatectic), and rhythmically zoned (igneous) cores truncated by rims that are either (ii) discordant rhythmically zoned (igneous) or (iii) unzoned (metamorphic or anatectic). These textural interpretations are supported by geochronology and oxygen isotope analysis. In both the amphibolite facies NW Adirondacks and the granulite facies SE Adirondacks, δ18O(Zrc) values in overgrowths and whole zircon are highly variable for metamorphic zircon (6.1–13.4‰; n = 95, 10 μm spot). In contrast, garnet is typically unzoned and δ18O(Grt) values are constant at each locality, differing only between leucosomes and corresponding melanosomes. None of the analysed metamorphic zircon–garnet pairs attained oxygen isotope equilibrium, indicating that zircon rims and garnet are not coeval. Furthermore, REE profiles from zircon rims indicate zircon growth in all regions was prior to significant garnet growth. Thus, petrological estimates from garnet equilibria (e.g. P–T) cannot be associated uncritically with ages determined from zircon. The unusually high δ18O values (>10‰) in zircon overgrowths from leucocratic layers are distinctly different from associated metaigneous rocks (δ18O(Zrc) < 10‰) indicating that these leucosomes are not injected magmas derived from known igneous rocks. Surrounding melanosomes have similarly high δ18O(Zrc) values, suggesting that leucosomes are related to surrounding melanosomes, and that these migmatites formed by anatexis of high δ18O metasedimentary rocks.  相似文献   

15.
The Greater Himalayan Sequence (GHS) has commonly been treated as a large coherently deforming high‐grade tectonic package, exhumed primarily by simultaneous thrust‐ and normal‐sense shearing on its bounding structures and erosion along its frontal exposure. A new paradigm, developed over the past decade, suggests that the GHS is not a single high‐grade lithotectonic unit, but consists of in‐sequence thrust sheets. In this study, we examine this concept in central Nepal by integrating temperaturetime (T–t) paths, based on coupled Zr‐in‐titanite thermometry and U–Pb geochronology for upper GHS calcsilicates, with traditional thermobarometry, textural relationships and field mapping. Peak Zr‐in‐titanite temperatures are 760–850°C at 10–13 kbar, and U–Pb ages of titanite range from c. 30 to c. 15 Ma. Sector zoning of Zr and distribution of U–Pb ages within titanite suggest that diffusion rates of Zr and Pb are slower than experimentally determined rates, and these systems remain unaffected into the lower granulite facies. Two types of T–t paths occur across the Chame Shear Zone (CSZ). Between c. 25 and 17–16 Ma, hangingwall rocks cool at rates of 1–10°C/Ma, while footwall rocks heat at rates of 1–10°C/Ma. Over the same interval, temperatures increase structurally upwards through the hangingwall, but by 17–16 Ma temperatures converge. In contrast, temperatures decrease upwards in footwall rocks at all times. While the footwall is interpreted as an intact, structurally upright section, the thermometric inversion within the hangingwall suggests thrusting of hotter rocks over colder from c. 25 to c. 17–16 Ma. Retrograde hydration that is restricted to the hangingwall, and a lithological repetition of orthogneiss are consistent with thrust‐sense shear on the CSZ. The CSZ is structurally higher than previously identified intra‐GHS thrusts in central Nepal, and thrusting duration was 3–6 Ma longer than proposed for other intra‐GHS thrusts in this region. Cooling rates for both the hangingwall and footwall of the CSZ are comparable to or faster than rates for other intra‐GHS thrust sheets in Nepal. The overlap in high‐T titanite U–Pb ages and previously published muscovite 40Ar/39Ar cooling ages imply cooling rates for the hangingwall of ≥200°C/Ma after thrusting. Causes of rapid cooling include passive exhumation driven by a combination of duplexing in the Lesser Himalayan Sequence, and juxtaposition of cooler rocks on top of the GHS by the STDS. Normal‐sense displacement does not appear to affect T–t paths for rocks immediately below the STDS prior to 17–16 Ma.  相似文献   

16.
The Pleistocene speleothems of Sa Bassa Blanca cave, Mallorca, are excellent indicators of palaeoclimate variations, and are samples that allow evaluation of the products and processes of mixing‐zone diagenesis in an open‐water cave system. Integrated stratigraphic, petrographic and geochemical data from a horizontal core of speleothem identified two main origins for speleothem precipitates: meteoric‐marine mixing zone and meteoric‐vadose zone. Mixing‐zone precipitates formed at and just below the water–air interface of cave pools during interglacial times, when the cave was flooded as a result of highstand sea‐level. Mixing‐zone precipitates include bladed and dendritic high‐Mg calcite, microporous‐bladed calcite with variable Mg content, and acicular aragonite; their presence suggests that calcium‐carbonate cementation is significant in the studied mixing‐zone system. Fluid inclusion salinities, δ13C and δ18O compositions of the mixing‐zone precipitates suggest that mixing ratio was not the primary control on whether precipitation or dissolution occurred, rather, the proximity to the water table and degassing of CO2 at the interface, were the major controls on precipitation. Thus, simple two‐end‐member mixing models may apply only in mixing zones well below the water table. Meteoric‐vadose speleothems include calcite and high‐Mg calcite with columnar and bladed morphologies. Vadose speleothems precipitated during glacial stages when sea level was lower than present. Progressive increase in δ13C and δ18O of the vadose speleothems resulted from cooling temperatures and more positive seawater δ18O associated with glacial buildup. Such covariation could be considered as a valid alternative to models predicting invariant δ18O and highly variable δ13C in meteoric calcite. Glacio‐eustatic oscillations of sea‐level are recorded as alternating vadose and mixing‐zone speleothems. Short‐term climatic variations are recorded as alternating aragonite and calcite speleothems precipitated in the mixing zone. Fluid‐inclusion and stable‐isotope data suggest that aragonite, as opposed to calcite, precipitated during times of reduced meteoric recharge.  相似文献   

17.
Waters from high‐altitude alpine lakes are mainly recharged by meteoric water. Because of seasonal variations in precipitation and temperature and relatively short hydraulic residence times, most high‐altitude lakes have lake water isotopic compositions (δ18Olake) that fluctuate due to seasonality in water balance processes. Input from snowmelt, in particular, has a significant role in determining lake water δ18O. Here we compare two high‐resolution δ18Odiatom records from lake sediments in the Swedish Scandes with instrumental data from the last century obtained from nearby meteorological stations. The time period AD 1900–1990 is characterised by an increase in winter precipitation and high winter/summer precipitation ratios and this is recorded in δ18Odiatom as decreasing trends. Lowest δ18Odiatom values and highest amount of winter precipitation are found around AD 1990 when the winter North Atlantic Oscillation index was above +2. We conclude that for the last 150 a the main factor affecting the δ18Odiatom signal in these sub‐Arctic high‐altitude lakes with short residence times has been changes in amount of winter precipitation and that δ18Odiatom derived from high‐altitude lakes in the Swedish Scandes can be used as a winter precipitation proxy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Fluid plays a key role in metamorphism and magmatism in subduction zones. Veins in high‐pressure (HP) to ultrahigh‐pressure (UHP) rocks are the products of fluid‐rock interaction, and can thus provide important constraints on fluid processes in subduction zones. This contribution is an integrated study of zircon U–Pb and O–Hf, as well as whole‐rock Nd–Sr isotopic compositions for a quartz vein, a complex vein, and their host eclogite in the Sulu UHP terrane to decipher the timing and source of fluid flow under HP‐UHP metamorphic conditions. The inherited magmatic zircon cores from the host eclogite constrain the protolith age at c. 750 Ma. Their variable εHf(t) values from ?1.11 to 2.54 and low δ18O values of 0.32–3.40‰ reflect a protolith that formed in a rift setting due to the breakup of the supercontinent Rodinia. The hydrothermal zircon from the quartz and the complex veins shows euhedral shapes, relatively flat HREE pattern, slight or no negative Eu anomaly, low 176Lu/177Hf ratios, and low formation temperatures of 660–690 °C, indicating they precipitated from fluids under HP eclogite facies conditions. This zircon yielded similar U–Pb ages of 217 ± 2 and 213 ± 3 Ma within analytical uncertainty, recording the timing of fluid flow during the exhumation of the UHP rock. It is inferred that the fluids might be of internal origin based on the homogeneity of δ18O values of the hydrothermal zircon from the quartz (?2.41 ± 0.13‰) and complex veins (?2.35 ± 0.12‰), and the metamorphic grown zircon of the host eclogite (?2.23 ± 0.16‰). The similar εNd(t) values of the whole rocks also support such a point. Zircon O and whole‐rock Nd isotopic compositions are therefore useful to identify the source of fluid, for they are major and trace components in minerals involved in metamorphic reactions during HP‐UHP conditions. On the other hand, the hydrothermal zircon from the veins and the metamorphic zircon from the host eclogite exhibit variable εHf(t) values. Model calculation suggests that the Hf was derived from the breakdown of major rock‐forming minerals and recycling of the inherited magmatic zircon. The variable whole‐rock initial 87Sr/86Sr ratios might be caused by subsequent retrograde metamorphism after the formation of the veins.  相似文献   

19.
The Jinman Cu polymetallic deposit is located within Middle Jurassic sandstone and slate units in the Lanping Basin of southwestern China. The Cu mineralization occurs mainly as sulfide‐bearing quartz–carbonate veins in faults and fractures, controlled by a Cenozoic thrust–nappe system. A detailed study of fluid inclusions from the Jinman deposit distinguishes three types of fluid inclusions in syn‐ore quartz and post‐ore calcite: aqueous water (type A), CO2–H2O (type B), and CO2‐dominated (type C) fluid inclusions. The homogenization temperatures of CO2–H2O inclusions vary from 208°C to 329°C, with corresponding salinities from 0.6 to 4.6 wt.% NaCl equivalent. The homogenization temperatures of the aqueous fluid inclusions mainly range from 164°C to 249°C, with salinities from 7.2 to 20.2 wt.% NaCl equivalent. These characteristics of fluid inclusions are significantly different from those of basinal mineralization systems, but similar to those of orogenic or magmatic mineralization systems. The H and O isotope compositions suggest that the ore‐forming fluid is predominantly derived from magmatic water, with the participation of basinal brine. The δ34S values are widely variable between ?9.7 ‰ and 9.7 ‰, with a mode distribution around zero, which may be interpreted by the variation in physico‐chemical conditions or by compositional variation of the sources. The mixing of a deeply sourced CO2‐rich fluid with basinal brine was the key mechanism responsible for the mineralization of the Jinman deposit.  相似文献   

20.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号