首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对低动态高抖动环境下,影响GPS/INS紧组合精度的重要因素——惯性测量单元(IMU)数据中的噪声,该文提出利用小波降噪方法分离IMU数据中的噪声和有用信号以提高GPS/INS紧组合的精度。首先对IMU数据进行小波分解后得到的高频系数进行阈值量化处理,然后将GPS观测数据与降噪后的IMU数据进行GPS/INS紧组合解算,最终得到载体的导航信息。实例结果表明,该方法可以大幅提升GPS/INS紧组合的精度和稳定可靠性。  相似文献   

2.
车载IMU相对于车体的安装姿态信息是应用车辆非完整约束的必需条件,而车辆非完整约束可以有效解决GNSS信号长时间中断的情形下低成本INS+GNSS组合导航系统精度降低的问题。本文针对车载场景下的低成本消费级IMU,基于卡尔曼滤波和粒子滤波提出了一种估计IMU安装姿态的算法。该算法无需限制IMU相对于车体的姿态为小角度;随后,基于仿真平台对低成本消费级IMU进行建模,利用生成的若干组不同安装姿态的IMU数据对算法进行验证;最后进行车载测试。仿真结果和车载测试结果都表明,该算法可以准确地估计IMU相对于车体的安装姿态,对于低成本INS+GNSS组合导航系统精度的提高具有实际意义。  相似文献   

3.
卫星导航系统和惯性导航系统(INS)具有极强的互补性,两者组合能有效提高导航定位结果的可用性、连续性和可靠性. 随着北斗卫星导航系统(BDS)的快速发展和低成本惯导元件(IMU)性能的不断提高,进行基于BDS和低成本IMU的组合导航系统相关理论和技术研究具有很强的研究意义和实用价值. 本文首先对BDS RTK/M-EMS INS组合理论模型进行推导,并利用实测车载数据对组合系统的性能进行分析. 实验结果表明,在BDS中引入低成本IMU,可以在不损失定位精度的同时有效改善测速精度. 组合后在车载动态中定位精度影响为mm级,而速度误差改善在北、东、地方向达到了75.8%、79.5%、66.7%. 此外,在BDS+INS紧组合中使用双频数据可以改善测速定姿精度,速度误差改善为18.2%、33.3%、33.3%,姿态误差改善为41.1%、26.7%、59.0%.   相似文献   

4.
介绍了一种低成本微小型惯性测量组件(inertialmeasurementunit,IMU)和双天线GPS构成的组合定位定向系统。为确保组合系统的实时性和滤波稳定性,提出了一种基于UD分解的快速卡尔曼滤波算法,给出了IMU/GPS组合系统的软硬件设计和实验结果。该组合系统应用于炮兵测地车,具有成本低、精度高等优点,能够提高炮兵测地保障的精度和速度。  相似文献   

5.
Differential carrier phase observations from GPS (Global Positioning System) integrated with high-rate sensor measurements, such as those from an inertial navigation system (INS) or an inertial measurement unit (IMU), in a tightly coupled approach can guarantee continuous and precise geo-location information by bridging short outages in GPS and providing a solution even when less than four satellites are visible. However, to be efficient, the integration requires precise knowledge of the lever arm, i.e. the position vector of the GPS antenna relative to the IMU. A previously determined lever arm by direct measurement is not always available in real applications; therefore, an efficient automatic estimation method can be very useful. We propose a new hybrid derivative-free extended Kalman filter for the estimation of the unknown lever arm in tightly coupled GPS/INS integration. The new approach takes advantage of both the linear time propagation of the Kalman filter and the nonlinear measurement propagation of the derivative-free extended Kalman filter. Compared to the unscented Kalman filter, which in recent years is typically used as a superior alternative to the extended Kalman filter for nonlinear estimation, the virtue of the new Kalman filter is equal estimation accuracy at a significantly reduced computational burden. The performance of the new lever arm estimation method is assessed with simulated and real data. Simulations show that the proposed technique can estimate the unknown lever arm correctly provided that maneuvers with attitude changes are performed during initialization. Field test results confirm the effectiveness of the new method.  相似文献   

6.
A reduced inertial measurement unit (IMU) consisting of only one vertical gyro and two horizontal accelerometers or three orthogonal accelerometers can be used in land vehicle navigation systems to reduce volume and cost. In this paper, a reduced IMU is integrated with a Global Positioning System (GPS) receiver whose phase lock loops (PLLs) are aided with the Doppler shift from the integrated system. This approach is called tight integration with loop aiding (TLA). With Doppler aiding, the noise bandwidth of the PLL loop filters can be narrowed more than in the GPS-only case, which results in improved noise suppression within the receiver. In this paper, first the formulae to calculate the PLL noise bandwidth in a TLA GPS/reduced IMU are derived and used to design an adaptive PLL loop filter. Using a series of vehicle tests, results show that the noise bandwidth calculation formulae are valid and the adaptive loop filter can improve the performance of the TLA GPS/reduced IMU in both navigation performance and PLL tracking ability.  相似文献   

7.
As the battle environment becomes more complicated, the demand for higher accuracy and better anti-jam capacity of navigation has been increasing. The conventional JTIDS/INS/GPS integrated navigation cannot meet the demands of certain situations such as precision strike and formation flight. A new system that introduces the differential GPS into JTIDS/INS/GPS integration system is proposed to improve the navigation performance in the modern combined operations. In this system, the differential information of DGPS is transmitted through the communication data link of Link-16. As a result, the system resources are efficiently utilized and the controllability and anti-jam performance of the system are significantly enhanced. A hybrid slot allocation protocol (HSAP) that combines a static slot allocation algorithm and a dynamic slot allocation algorithm and the corresponding source-chosen mechanisms are proposed. The performance of the JTIDS/INS/GPS integration navigation using the differential GPS information from one or multiple base stations is studied and compared with that of the system without using the differential GPS information. Furthermore, the performance of the integration navigation using HSAP is compared with that of the system using static slot allocation algorithm. We show that navigation accuracy based on the differential GPS is improved, and using HSAP also leads to higher localization accuracy.  相似文献   

8.
为了系统验证SINS/GPS紧组合系统的性能,基于GPS软件接收机,进行了仿真系统构建。仿真系统由轨迹发生器、GPS中频信号模拟器、IMU信号模拟器、GPS软件接收机、SINS导航解算模块、组合滤波算法和导航性能分析模块等部分构成,其中详细设计了GPS软件接收机中的捕获和跟踪算法、SINS解算以及基于伪距和伪距率的组合滤波算法。仿真结果表明:紧组合导航系统收敛性较好,能够一定程度上抑制惯导系统误差的积累,有较好的导航性能。设计的该系统满足紧组合导航系统性能验证的需要,也为后续的超紧组合研究奠定了良好的基础。  相似文献   

9.
扩展卡尔曼滤波(EKF)是GPS/INS组合导航系统工程实现中常用的一种数据融合方式。但EKF线性化误差在一定程度上影响了GPS/INS组合导航系统精度的提高。Unscented卡尔曼滤波器(UKF)是一种非线性滤波器,它能有效地减小线性化误差对GPS/INS组合导航系统精度的影响。基于四元数法建立了GPS/INS组合导航系统的非线性误差方程模型;最后通过数字仿真验证了UKF组合导航系统应用中的性能。  相似文献   

10.
A CE-5T1 spacecraft completed a high-speed skip re-entry to the earth after a circumlunar flight on October 31, 2014. In addition to the strapdown inertial navigation system (SINS), a lightweight GPS receiver with rapid acquisition was developed as a navigation sensor in the re-entry capsule. The GPS receiver effectively solved the poor accuracy problem of long-term navigation using only the SINS. In contrast to ground users and low-earth-orbit spacecraft, numerous factors, including high altitude and kinetic characteristics in high-speed skip re-entry, are important for GPS positioning feasibility and were presented in accordance with the flight data. GPS solutions started at nearly 4900 km orbital altitude during the phases of re-entry process. These solutions were combined by an inertial measurement unit in a loosely coupled integrated navigation method and SINS navigation initialization. A simplified GPS/SINS navigation filter for limited resources was effectively developed and implemented on board for spacecraft application. Flight data estimation analyses, including trajectory, attitude, position distribution of GPS satellite, and navigation accuracy, were presented. The estimated accuracy of position was better than 42 m, and the accuracy of velocity was better than 0.1 m/s.  相似文献   

11.
组合导航系统有利于充分利用各导航系统进行信息互补与信息合作,成为导航系统发展的方向。在所有的组合导航系统中,以GPS与惯性导航系统INS组合的系统最为理想,而深组合方式是GPS与惯性导航系统(INS)组合的最优方法。鉴于GPS的不可依赖性,北斗卫星导航系统与INS的组合是组合导航系统的发展趋势,研究其组合模式具有重要意义。通过分析、评述国外INS/GPS深组合导航系统的发展现状,提出我国自主研制INS/北斗深组合导航系统需要解决的关键技术。  相似文献   

12.
GPS/SINS组合导航系统的观测模型直接关系着导航系统的精度。提出了一种基于双差伪距/伪距率的GPS/SINS紧组合观测模型。分析了采用双差伪距和采用双差伪距/伪距率两种观测模型对组合导航输出参数精度的影响。实测数据结果表明,采用双差伪距和采用双差伪距/伪距率作为观测值均能实现组合导航系统的收敛。引入双差伪距率观测值明显改善了系统的可观测性,不仅提高了组合导航中速度和姿态角的估计精度,也加快了速度误差和姿态角误差估计的收敛速度。  相似文献   

13.
目前GPS/INS制导控制技术已成为精确制导武器的核心技术。根据GPS导航的特点及GPS/INS制导机理,对压制式干扰对GPS接收机的影响进行了分析,并分析了采用自适应调零天线技术来提高GPS/INS组合式导航抗干扰能力的有效性。  相似文献   

14.
Although the integrated system of a differential global positioning system (DGPS) and an inertial navigation system (INS) had been widely used in many geodetic navigation applications, it has sometimes a major limitation. This limitation is associated with the frequent occurrence of DGPS outages caused by GPS signal blockages in certain situations (urban areas, high trees, tunnels, etc.). In the standard mechanization of INS/DGPS navigation, the DGPS is used for positioning while the INS is used for attitude determination. In case of GPS signal blockages, positioning is provided using the INS instead of the GPS until satellite signals are obtained again with sufficient accuracy. Since the INS has a very short-time accuracy, the accuracy of the provided INS navigation parameters during these periods decreases with time. However, the obtained accuracy in these cases is totally dependent on the INS error model and on the quality of the INS sensor data. Therefore, enhanced navigation parameters could be obtained during DGPS outages if better inertial error models are implemented and better quality inertial measurements are used. In this paper, it will be shown that better INS error models are obtained using autoregressive processes for modeling inertial sensor errors instead of Gauss–Markov processes that are implemented in most of the current inertial systems and, on the other hand, that the quality of inertial data is improved using wavelet multi-resolution techniques. The above two methods are discussed and then a combined algorithm of both techniques is applied. The performance of each method as well as of the combined algorithm is analyzed using land-vehicle INS/DGPS data with induced DGPS outage periods. In addition to the considerable navigation accuracy improvement obtained from each single method, the results showed that the combined algorithm is better than both methods by more than 30%.  相似文献   

15.
GPS单点测速的误差分析及精度评价   总被引:6,自引:0,他引:6  
首先从理论和实测数据模拟两方面分析了SA取消后各类误差源对GPS测速的影响,推导并计算了GPS单点测速可能达到的精度水平。然后用静态数据模拟动态测速试验和实测动态数据测速与同步高精度惯导测速的动态试验进行验证。结果表明,采用载波相位导出的多普勒观测值使用静态数据模拟动态测速,其精度可以达到mm/s级;用接收机输出的多普勒观测值进行测速时,其精度为cm/s级。在动态测速试验中,GPS单点测速方法(即多普勒观测值测速与导出多普勒观测值测速)间的符合精度达到cm/s级,与高精度的惯导测速结果的符合精度为dm/s级,而且和运动载体的动态条件(如加速度和加速度变化率的大小)具有很强的相关性。  相似文献   

16.
An airborne radio occultation (RO) system has been developed to retrieve atmospheric profiles of refractivity, moisture, and temperature. The long-term objective of such a system is deployment on commercial aircraft to increase the quantity of moisture observations in flight corridors in order to improve weather forecast accuracy. However, there are several factors important to operational feasibility that have an impact on the accuracy of the airborne RO results. We investigate the effects of different types of navigation system noise on the precision of the retrieved atmospheric profiles using recordings from the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) test flights, which used an Applanix POS/AV 510 Global Positioning System (GPS)/Inertial Navigation System (INS). The data were processed using a carrier phase differential GPS technique, and then the GPS position and inertial measurement unit data were combined in a loosely coupled integrated inertial navigation solution. This study quantifies the velocity precision as a function of distance from GPS reference network sites, the velocity precision with or without an inertial measurement unit, the impact of the quality of the inertial measurement unit, and the compromise in precision resulting from the use of real-time autonomous GPS positioning. We find that using reference stations with baseline lengths of up to 760?km from the survey area has a negligible impact on the retrieved refractivity precision. We also find that only a small bias (less than 0.5% in refractivity) results from the use of an autonomous GPS solution rather than a post-processed differential solution when used in an integrated GPS/INS system. This greatly expands the potential range of an operational airborne radio occultation system, particularly over the oceans, where observations are sparse.  相似文献   

17.
The integration of Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) technologies is a very useful navigation option for high-accuracy positioning in many applications. However, its performance is still limited by GNSS satellite availability and satellite geometry. To address such limitations, a non-GNSS-based positioning technology known as “Locata” is used to augment a standard GNSS/INS system. The conventional methods for multi-sensor integration can be classified as being either in the form of centralized Kalman filtering (CKF), or decentralized Kalman filtering. However, these two filtering architectures are not always ideal for real-world applications. To satisfy both accuracy and reliability requirements, these three integration algorithms—CKF, federated Kalman filtering (FKF) and an improved decentralized filtering, known as global optimal filtering (GOF)—are investigated. In principle, the GOF is derived from more information resources than the CKF and FKF algorithms. These three algorithms are implemented in a GPS/Locata/INS integrated navigation system and evaluated using data obtained from a flight test. The experimental results show that the position, velocity and attitude solution derived from the GOF-based system indicate improvements of 30, 18.4 and 20.8% over the CKF- and FKF-based systems, respectively.  相似文献   

18.
里程计通常被用于辅助车载GNSS/INS组合导航系统,以解决当遇到高楼、密林、隧道等信号干扰和遮蔽严重情景时导致精度下降的问题,而里程计辅助需要获取准确的里程计杆臂和安装角。鉴于此,本文提出了一种基于预积分的IMU/ODO外参估计算法,使用由里程计观测和GNSS/INS组合导航解算得到的一段时间内的里程增量差异构建代价函数,通过非线性优化器进行标定参数求解。仿真与实际测试均表明了本文标定方法的有效性,里程计观测在经过标定外参补偿后,可为车载GNSS/INS组合导航系统提供厘米级的精度辅助。  相似文献   

19.
Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter   总被引:2,自引:2,他引:0  
Dead reckoning techniques such as inertial navigation and odometry are integrated with GPS to avoid interruption of navigation solutions due to lack of visible satellites. A common method to achieve a low-cost navigation solution for land vehicles is to use a MEMS-based inertial measurement unit (IMU) for integration with GPS. This integration is traditionally accomplished by means of a Kalman filter (KF). Due to the significant inherent errors of MEMS inertial sensors and their time-varying changes, which are difficult to model, severe position error growth happens during GPS outages. The positional accuracy provided by the KF is limited by its linearized models. A Particle filter (PF), being a nonlinear technique, can accommodate for arbitrary inertial sensor characteristics and motion dynamics. An enhanced version of the PF, called Mixture PF, is employed in this paper. It samples from both the prior importance density and the observation likelihood, leading to an improved performance. Furthermore, in order to enhance the performance of MEMS-based IMU/GPS integration during GPS outages, the use of pitch and roll calculated from the longitudinal and transversal accelerometers together with the odometer data as a measurement update is proposed in this paper. These updates aid the IMU and limit the positional error growth caused by two horizontal gyroscopes, which are a major source of error during GPS outages. The performance of the proposed method is examined on road trajectories, and results are compared to the three different KF-based solutions. The proposed Mixture PF with velocity, pitch, and roll updates outperformed all the other solutions and exhibited an average improvement of approximately 64% over KF with the same updates, about 85% over KF with velocity updates only, and around 95% over KF without any updates during GPS outages.  相似文献   

20.
The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The results prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号