首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widespread sheets of fine particulate sediment frequently deposited by tsunami constitute valuable evidence from which to reconstruct tsunami inundation. This is illustrated with evidence from three sites near Montrose, in eastern Scotland, U.K., where a horizon of mainly sand, laid down during the Holocene Storegga Slide palaeotsunami of circa 8000 BP is examined. The horizon is remarkably consistent in its distribution, morphology, stratigraphy, and particle size characteristics. These properties allow inferences to be made on the nature of tsunami flow onshore and run-up. It is suggested that estimates can be made of the possible depth of water involved from the characteristics of the sediment, and thus of the extent of inundation involved in the tsunami at these sites.  相似文献   

2.
Over the past 200 years of written records, the Hawaiian Islands have experienced tens of tsunamis generated by earthquakes in the subduction zones of the Pacific ‘Ring of Fire’ (for example, Alaska–Aleutian, Kuril–Kamchatka, Chile and Japan). Mapping and dating anomalous beds of sand and silt deposited by tsunamis in low-lying areas along Pacific coasts, even those distant from subduction zones, is critical for assessing tsunami hazard throughout the Pacific basin. This study searched for evidence of tsunami inundation using stratigraphic and sedimentological analyses of potential tsunami deposits beneath present and former Hawaiian wetlands, coastal lagoons, and river floodplains. Coastal wetland sites on the islands of Hawai΄i, Maui, O΄ahu and Kaua΄i were selected based on historical tsunami runup, numerical inundation modelling, proximity to sandy source sediments, degree of historical wetland disturbance, and breadth of prior geological and archaeological investigations. Sand beds containing marine calcareous sediment within peaty and/or muddy wetland deposits on the north and north-eastern shores of Kaua΄i, O΄ahu and Hawai΄i were interpreted as tsunami deposits. At some sites, deposits of the 1946 and 1957 Aleutian tsunamis are analogues for deeper, older probable tsunami deposits. Radiocarbon-based age models date sand beds from three sites to ca 700 to 500 cal yr bp , which overlaps ages for tsunami deposits in the eastern Aleutian Islands that record a local subduction zone earthquake. The overlapping modelled ages for tsunami deposits at the study sites support a plausible correlation with an eastern Aleutian earthquake source for a large prehistoric tsunami in the Hawaiian Islands.  相似文献   

3.
The Storegga tsunami, dated in Norway to 8150±30 cal. years BP, hit many countries bordering the North Sea. Run-ups of >30 m occurred and 1000s of kilometres of coast were impacted. Whilst recent modelling successfully generated a tsunami wave train, the wave heights and velocities, it under-estimated wave run-ups. Work presented here used luminescence to directly date the Storegga tsunami deposits at the type site of Maryton, Aberdeenshire in Scotland. It also undertook sedimentological characterization to establish provenance, and number and relative power of the tsunami waves. Tsunami model refinement used this to better understand coastal inundation. Luminescence ages successfully date Scottish Storegga tsunami deposits to 8100±250 years. Sedimentology showed that at Montrose, three tsunami waves came from the northeast or east, over-ran pre-existing marine sands and weathered igneous bedrock on the coastal plain. Incorporation of an inundation model predicts well a tsunami impacting on the Montrose Basin in terms of replicate direction and sediment size. However, under-estimation of run-up persisted requiring further consideration of palaeotopography and palaeo-near-shore bathymetry for it to agree with sedimentary evidence. Future model evolution incorporating this will be better able to inform on the hazard risk and potential impacts for future high-magnitude submarine generated tsunami events.  相似文献   

4.
The tsunami run-up, inundation and damage pattern observed along the coast of Tamilnadu (India) during the deadliest Indian Ocean tsunami of December 26, 2004 is documented in this paper. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries, bordering the Indian Ocean. Along the coast of Indian mainland, the damage was caused by the tsunami only. Largest tsunami run-up and inundation was observed along the coast of Nagapattinam district and was about 10–12 m and 3.0 km, respectively. The measured inundation data were strongly scattered in direct relationship to the morphology of the seashore and the tsunami run-up. Lowest tsunami run-up and inundation was measured along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts of Tamilnadu in the Palk Strait. The presence of shadow of Sri Lanka, the interferences of direct/receded waves with the reflected waves from Sri Lanka and Maldive Islands and variation in the width of continental shelf were the main cause of large variation in tsunami run-up along the coast of Tamilnadu.  相似文献   

5.
This study develops a method for estimating the number of casualties that may occur while people evacuate from an inundation zone when a tsunami has inundated an area. The method is based on a simple model of hydrodynamic forces as they affect the human body. The method uses a Tsunami casualty index (TCI) computed at each grid point of a numerical tsunami model to determine locations and times within the tsunami inundation zone where evacuation during the tsunami inundation is not possible and therefore where casualties are likely to occur. The locations and times can be combined with information about population density to compute the potential number of casualties. This information is useful in developing tsunami evacuation routes that avoid such locations. To illustrate the method, it is applied to the Seattle waterfront in Washington State, USA, that is under the threat of possible tsunami disasters due to Seattle Fault earthquakes. Preliminary results suggest that the tsunami casualties may occur within the Seattle waterfront for 15 min, during the time interval from 3 to 18 min after a large Seattle Fault tsunami is generated when the background tide level is mean high water.  相似文献   

6.
Deterministic analysis of local tsunami generated by subduction zone earthquakes demonstrates the potential for extensive inundation and building damage in Napier, New Zealand. We present the first high-resolution assessments of tsunami inundation in Napier based on full simulation from tsunami generation to inundation and demonstrate the potential variability of onshore impacts due to local earthquakes. In the most extreme scenario, rupture of the whole Hikurangi subduction margin, maximum onshore flow depth exceeds 8.0 m within 200 m of the shore and exceeds 5.0 m in the city centre, with high potential for major damage to buildings. Inundation due to single-segment or splay fault rupture is relatively limited despite the magnitudes of MW 7.8 and greater. There is approximately 30 min available for evacuation of the inundation zone following a local rupture, and inundation could reach a maximum extent of 4 km. The central city is inundated by up to three waves, and Napier Port could be inundated repeatedly for 12 h. These new data on potential flow depth, arrival time and flow kinematics provide valuable information for tsunami education, exposure analysis and evacuation planning.  相似文献   

7.
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.  相似文献   

8.
Sediment core and trench data from a coastal lagoon on the West Coast of the South Island, New Zealand are used to investigate evidence for co-seismic subsidence and associated tsunami inundation. Physical data are used to document a salt marsh soil buried  80 cm below the modern sediment surface that is locally covered by a gravelly sand bed. The sediment record also contains geochemical and biological (diatom and foram) evidence for abrupt changes in salinity of lagoon waters that link to subsidence, tsunami flooding and to the open versus closed state of the lagoon tidal entrance. At the local scale, these relationships allow for separation of tsunami evidence from other agents of environmental change in the lagoon. We also propose a conceptual connection between these local changes and regional drivers of landscape development, most notably major earthquakes and resultant pulses in sediment supply to the coast.  相似文献   

9.
The tsunami of 2004 in the Indian Ocean transported thousands of meters-long boulders shoreward at Pakarang Cape, Thailand. We investigated size, position and long axis orientation of 467 boulders at the cape. Most of boulders found at the cape are well rounded, ellipsoid in shape, without sharp broken edges. They were fragments of reef rocks and their sizes were estimated to be < 14m3 (22.7t). The distribution pattern and orientation of long axis of boulders reflect the inundation pattern and behavior of the tsunami waves. It was found that there is no clear evidence indicating monotonous fine/coarse shoreward trends of these boulders along each transect line. On the other hand, the large boulders were deposited repeatedly along the three arcuate lines at the intertidal zone with a spacing of approximately 136m interval. This distribution pattern may suggest that long-lasting oscillatory flows might have repositioned the boulders and separated the big ones from small. No boulders were found on land, indicating that the hydraulic force of the tsunami wave rapidly dissipated on reaching the land due to the higher bottom friction and the presence of a steep slope. We further conducted numerical calculation of tsunami inundation at Pakarang Cape. According to the calculation, the sea receded and the major part of the tidal bench (area with boulders at present) was exposed above the sea surface before the arrival of the first tsunami wave. The first tsunami wave arrived at the cape from west to east at approximately 130min after the tsunami generation, and then inundated inlands. Our calculation shows that tsunami wave was focused around the offshore by a small cove at the reef edge and spread afterwards in a fan-like shape on the tidal bench. The critical wave velocities necessary to move the largest and average-size boulders by sliding can be estimated to be approximately 3.2 and 2.0m/s, respectively. The numerical result indicates that the maximum current velocity of the first tsunami wave was estimated to be from 8 to 15m/s between the reef edge and approximately 500m further offshore. This range is large enough for moving even the largest boulder shoreward. These suggest that the tsunami waves that were directed eastward, struck the reef rocks and coral colonies, originally located on the shallow sea bottom near the reef edge, and detached and transported the boulders shoreward.  相似文献   

10.
Cenotes (natural wells or sinkholes) comprise the most common landscape features in the northern Maya Lowlands of the Yucatán Peninsula, México. Detailed study of dated soil‐sedimentary sequences, recovered from a cenote at the archaeological site T’isil and nearby wetlands, allows a partial reconstruction of environmental variability at the site for the last 2000 years. Biogenic calcite sedimentation and Calcisol development occur during three intervals of increased inundation in cenote and wetland environments, ca. A.D. 300, A.D. 1000, and A.D. 1300. Periods of increased inundation in the cenote and wetlands correlate with wetter climatic intervals, and periods of Maya occupation at sites in the Yalahau region. Evidence for Maya modification of the cenote environment may relate to regional wetland agricultural practices.  相似文献   

11.
Nagapattinam, in the east coast of India, was severely affected during the deadliest Indian Ocean tsunami of December 26, 2004. The tsunami caused heavy damage to life and property, and the death toll was about 3,378 in Nagapattinam taluk. Certain villages along the coast witnessed large inundation while adjacent villages were protected from the fury of the tsunami waves. This study was carried out to examine the underlying causes for the vulnerability along Nagapattinam coast with the help of field observations, remote sensing, and geographical information system as tools. Coastal areas with high sand dunes have been protected from tsunami, and areas adjacent to backwaters were inundated. Realtime Kinematic Global Positioning System and high-resolution satellite data were used to map the topographic information and maximum extent of inundation. Thematic maps on land use, land cover, and coastal geomorphology were generated using remote sensing and field data. Using field data as the primary source of information, tsunami hazard maps have been generated for Nagapattinam.  相似文献   

12.
The Indian Ocean tsunami flooded the coastal zone of the Andaman Sea and left tsunami deposits with a thickness of a few millimetres to tens of centimetres over a roughly one-kilometre-wide tsunami inundation zone. The preservation potential and the post-depositional changes of the onshore tsunami deposits in the coastal plain setting, under conditions of a tropical climate with high seasonal rainfall, were assessed by reinvestigating trenches located along 13 shore-perpendicular transects; the trenches were documented shortly after the tsunami and after 1, 2, 3 and 4 years. The tsunami deposits were found preserved after 4 years at only half of the studied sites. In about 30% of the sites, the tsunami deposits were not preserved due to human activity; in a further 20% of the sites, the thin tsunami deposits were eroded or not recognised due to new soil formation. The most significant changes took place during the first rainy season when the relief of the tsunami deposits was levelled; moderate sediment redeposition took place, and fine surface sediments were washed away, which frequently left a residual layer of coarse sand and gravel. The fast recovery of new plant cover stabilised the tsunami deposits and protected them against further remobilisation during the subsequent years. After five rainy seasons, tsunami deposits with a thickness of at least a few centimetres were relatively well preserved; however, their internal structures were often significantly blurred by roots and animal bioturbation. Moreover, soil formation within the deposits caused alterations, and in the case of thin layers, it was not possible to recognise them anymore. Tsunami boulders were only slightly weathered but not moved. Among the various factors influencing the preservation potential, the thickness of the original tsunami deposits is the most important. A comparison between the first post-tsunami survey and the preserved record suggests that tsunamis with a run-up smaller than three metres are not likely to be preserved; for larger tsunamis, only about 50% of their inundation area is likely to be presented by the preserved extent of the tsunami deposits. Any modelling of paleotsunamis from their deposits must take into account post-depositional changes.  相似文献   

13.
The 1945 Tsunami generated due to Makran Earthquake in the Arabian Sea was the most devastating tsunami in the history of the Arabian Sea and caused severe damage to property and loss of life. It occurred on 28th November 1945, 21:56 UTC (03:26 IST) with a magnitude of 8.0 (M w), originating off the Makran Coast of Pakistan in the Arabian Sea. It has impacted as far as Mumbai in India and was noticed up to Karvar Coast, Karnataka. More than 4,000 people were killed as a result of the earthquake and the tsunami. In this paper an attempt is made for a numerical simulation of the tsunami generation from the source, its propagation into the Arabian Sea and its effect on the western coast of India through the use of a numerical model, referred to as Tunami-N2. The present simulation is carried out for a duration of 300 min. It is observed from the results that the simulated arrival time of tsunami waves at the western coast of India is in good agreement with the available data sources. The paper also presents run-up elevation maps prepared using Shuttle Radar Topographic Mission (SRTM) data, showing the possible area of inundation due to various wave heights along different parts of the Gujarat Coast. Thus, these results will be useful in planning the protection measures against inundation due to tsunami and in the implementation of a warning system.  相似文献   

14.
Coastal communities in the western United States face risks of inundation by distant tsunamis that propagate across the Pacific Ocean as well as local tsunamis produced by great (Mw?>?8) earthquakes on the Cascadia subduction zone. In 1964, the Mw 9.2 Alaska earthquake launched a Pacific-wide tsunami that flooded Cannon Beach, a small community (population 1640) in northwestern Oregon, causing over $230,000 in damages. However, since the giant 2004 Indian Ocean tsunami, the 2010 Chile tsunami and the recent 2011 Tohoku-Oki tsunami, renewed concern over potential impacts of a Cascadia tsunami on the western US has motivated closer examination of the local hazard. This study applies a simple sediment transport model to reconstruct the flow speed of the most recent Cascadia tsunami that flooded the region in 1700 using the thickness and grain size of sand layers deposited by the waves. Sedimentary properties of sand from the 1700 tsunami deposit provide model inputs. The sediment transport model calculates tsunami flow speed from the shear velocity required to suspend the quantity and grain size distribution of the observed sand layers. The model assumes a steady, spatially uniform tsunami flow and that sand settles out of suspension forming a deposit when the flow velocity decreases to zero. Using flow depths constrained by numerical tsunami simulations for Cannon Beach, the sediment transport model calculated flow speeds of 6.5?C7.6?m/s for sites within 0.6?km of the beach and higher flow speeds (~8.8?m/s) for sites 0.8?C1.2?km inland. Flow speed calculated for sites within 0.6?km of the beach compare well with maximum velocities estimated for the largest tsunami simulation. The higher flow speeds calculated for the two sites furthest landward contrast with much lower maximum velocities (<3.8?m/s) predicted by numerical simulations. Grain size distributions of sand layers from the most distal sites are inconsistent with deposition from sediment falling out of suspension. We infer that rapid deceleration in tsunami flow and convergences in sediment transport formed unusually thick deposits. Consequently, higher flow speeds calculated by the sediment model probably overestimate the actual wave speed at sites furthest inland.  相似文献   

15.
《Quaternary Science Reviews》2003,22(10-13):1085-1092
Climate changes over the Holocene have directly impacted on both coastal processes and human use of coastal areas. This paper presents results from the dating of wind blown sand deposits collected from coastal and archaeological sites in Northern Scotland. Archaeological remains are frequently found interspersed with sand deposits and represent distinct periods of occupation of settlement sites within the local landscapes. In some cases storm events sufficiently inundate the sites with sand to result in periodic abandonment. Storm events can also have dramatic results on adjacent rock coastlines, with storm boulder ridges emplaced by large waves, burying sand deposits on cliff-top sites. Work has been undertaken using a quartz SAR protocol to date sand deposition at two archaeological sites in Orkney and a cliff-top site in Shetland. These dates provide chronological information, which help to construct regional chronologies of climatic instability and environmental change and allow the SAR-OSL method to be assessed as an accurate sediment dating tool in this context.  相似文献   

16.
Palaeoenvironmental research is playing an important role in recent archaeological investigations. We present preliminary results of geoarchaeological analyses conducted at a palaeochannel located between two prehistoric archaeological sites in eastern Hungary. The study area lies within the Körös River Basin in Békés County, a region of intensive human occupation beginning in the Neolithic, ca. 7550 BP, and represents only the second palynological analysis done in conjunction with archaeological investigations and adjacent to an archaeological site in the Körös region. Pollen from an environmental monolith was used to reconstruct the local vegetation composition and the human impact on arboreal and non-arboreal vegetation near the archaeological sites. Sediment analyses helped to reconstruct hydrological activity and human impact on the local palaeochannel. Results indicate that activity from the Neolithic onwards played an important role in local environmental change, including increasing sedimentation and deposition of organic matter in the local waterway, some forest clearance and a shift from primarily arboreal vegetation to more grasses on elevated surfaces. The trophic status of the local channel changed several times during the Holocene. In addition, indications that groundwater levels may have been fluctuating during the period of human occupation, when combined with the other changes in the area, provide a possible partial explanation for changing settlement patterns.  相似文献   

17.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   

18.
A simple model for calculating tsunami flow speed from tsunami deposits   总被引:2,自引:0,他引:2  
This paper presents a simple model for tsunami sedimentation that can be applied to calculate tsunami flow speed from the thickness and grain size of a tsunami deposit (the inverse problem). For sandy tsunami deposits where grain size and thickness vary gradually in the direction of transport, tsunami sediment transport is modeled as a steady, spatially uniform process. The amount of sediment in suspension is assumed to be in equilibrium with the steady portion of the long period, slowing varying uprush portion of the tsunami. Spatial flow deceleration is assumed to be small and not to contribute significantly to the tsunami deposit. Tsunami deposits are formed from sediment settling from the water column when flow speeds on land go to zero everywhere at the time of maximum tsunami inundation. There is little erosion of the deposit by return flow because it is a slow flow and is concentrated in topographic lows. Variations in grain size of the deposit are found to have more effect on calculated tsunami flow speed than deposit thickness. The model is tested using field data collected at Arop, Papua New Guinea soon after the 1998 tsunami. Speed estimates of 14 m/s at 200 m inland from the shoreline compare favorably with those from a 1-D inundation model and from application of Bernoulli's principle to water levels on buildings left standing after the tsunami. As evidence that the model is applicable to some sandy tsunami deposits, the model reproduces the observed normal grading and vertical variation in sorting and skewness of a deposit formed by the 1998 tsunami.  相似文献   

19.
This paper outlines the field measurements and numerical modelling carried out to develop a high-resolution tsunami inundation map, as a case study, for the city of Trincomalee on the east coast of Sri Lanka, which was devastated by the 2004 tsunami. We employ the deterministic approach together with numerical simulations based on the probable worst-case scenario to derive the inundation map. Linear and non-linear versions of shallow-water equations have been utilized to simulate tsunami propagation and onshore inundation, respectively. The field data considered in the present paper comprise the extent of inundation, the tsunami heights and the arrival times whilst the model results include the spatial distribution of the flow depth, the peak current speeds and the momentum flux. The computed extent of onshore inundation reproduces the observed overall pattern of inundation in most areas barring the south-eastern part of the city. Further, the model simulations suggest maximum flow depths up to about 2 m in most areas of the city whilst patches of flow depths exceeding 2 m can be seen in a narrow strip along the coastline. The computed current speeds also exceed 3 m/s at some locations adjacent to the shoreline.  相似文献   

20.
The National Geophysical Data Center and co-located World Data Center for Geophysics and Marine Geology provide integrated access to historical tsunami event, deposit, and proxy data. Historical events are important for understanding the frequency and intensity of relatively recent tsunamis. Deposit data collected during post-tsunami field surveys provide information on tsunami erosion, sedimentation, flow depths, inundation, and run-up. Deposit data from prehistoric tsunami events extend the record to pre-recorded times, constrain tsunami recurrence intervals, and estimate the minimum magnitude of tsunami inundation. Proxies indicate that an event capable of producing a tsunami occurred, but are not direct evidence of a tsunami. All of these data are used to develop tsunami hazard assessments, provide guidance to warning centers, validate models, inform community preparedness efforts, and educate the public about tsunami risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号