首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用原位观测平台,研究分析了太湖竺山湾风速、湖流流速、波高以及藻类水平漂移特征及其影响因素,结果表明日间藻类水平漂移速率呈锯齿式交替特征,日内藻类水平漂移速率变化幅度大;藻类水平漂移速率与风速之间呈显著线性正相关;当0.02 m < 有效波高 < 0.1 m时,藻类水平漂移速率与有效波高呈显著线性负相关,当有效波高 > 0.1 m时,波浪会显著改变藻类运动方式,破坏藻类表层聚集形态;湖流对藻类水平漂移速率无显著性影响;藻类水平漂移方向受湖流流向和风向的共同作用;藻类水平漂移速率与风速、波高、湖流流速间关系可用多元线性方程表达,且拟合度良好,可为藻类水华预测模型构建提供依据.  相似文献   

2.
本文利用考虑了Hall效应和有限Larmor半径(FLR)效应的磁流体数值模拟研究了在离子惯性长度/离子Larmor半径尺度内偶极化锋面的动力学特性.偶极化锋面由磁尾近地区域中由于热压尾向梯度和磁场曲率力不平衡所引起的交换不稳定性自洽产生.数值研究表明,偶极化锋面是切向间断,在相对该锋面结构静止的参考系中等离子体穿过偶极化锋面的法向速度为零.Hall效应主要影响与偶极化锋面的切平面相正交的电场,使得锋面切向电流增大,同时产生锋面结构不对称.研究表明离子在Larmor半径尺度产生的FLR效应可导致锋面结构的大尺度漂移运动.由FLR效应产生的离子磁化流速在偶极化锋面的日下点处指向昏向,锋面后区域的速度晨向分量增长,从而导致整个锋面结构向晨向漂移.  相似文献   

3.
Antarctic tabular icebergs are important active components in the ice sheet-ice shelf-ocean system. Seafloor topography is the key factor that affects the drifting and grounding of icebergs, but it has not been fully investigated. This study analyzes the impact of seafloor topography on the drifting and grounding of Antarctic tabular icebergs using Bedmap-2 datasets and iceberg route tracking data from Brigham Young University. The results highlight the following points. (1) The quantitative distributions of iceberg grounding events and the tracking points of grounded icebergs are mainly affected by iceberg draft and reach their peak values in sea water with depths between 200 m and 300 m. The peak tracking point number and linear velocity of free-drifting icebergs are found in the Antarctic Slope Front (water depth of approximately 500 m). (2) The area of possible grounding regions of small-scale icebergs calved from ice shelf fronts accounts for 28% of the sea area at water depths less than 2000 m outside the Antarctic coastline periphery (3.62 million km2). Their spatial distribution is mainly around East Antarctica and the Antarctic Peninsula. The area of possible grounding regions of large tabular icebergs with long axes larger than 18.5 km (in water depths of less than 800 m) accounts for 74% of the sea area. (3) The iceberg drifting velocity is positively correlated with ocean depth in areas where the depth is less than 2000 m (R=0.85, P<0.01). This result confirms the effect of water depth variations induced by seafloor topography fluctuations on iceberg drifting velocity.  相似文献   

4.
《国际泥沙研究》2016,(3):205-211
Observations from field investigations showed that flow velocity greater than 3 m/s rarely occurs in nature, and high flow velocity stresses the bio-community and causes instability to the channel. For alluvial rivers without strong human disturbance, the flow velocity varies within a limited range, gen-erally below 3 m/s, while the discharge and wet area may vary in a range of several orders. This phe-nomenon was studied by analyzing hydrological data, including daily average discharge, stage, cross sections, and sediment concentration, collected from 25 stations on 20 rivers in China, including the Yangtze, Yellow, Songhua, Yalu, Daling, and Liaohe Rivers. The cross-sectional average velocity was cal-culated from the discharge and wet area using the continuity equation. For alluvial rivers, the wet cross section may self-adjust in accordance with the varying flow discharge so that the flow velocity does not exceed a limit value. In general, the average velocity increases with the discharge increase at low dis-charge. As the discharge exceeds the discharge capacity of the banks, any further increase in discharge does not result in a great increase in velocity. The average velocity approaches an upper limit as the discharge increases. This limit velocity, in most cases, is less than 3 m/s. Human activities, especially levee construction, disturb the limit velocity law for alluvial rivers. In these cases, the average velocity may be approximately equal to or higher than the limit velocity. The limit velocity law has profound morphological and ecological implications on alluvial rivers and requires further study. Rivers should be trained and managed by mimicking natural processes and meeting the limit velocity law, so as to maintain ecologically-sound and morphological stability.  相似文献   

5.
Large rivers have been previously shown to be vertically heterogeneous in terms of suspended particulate matter (SPM) concentration, as a result of sorting of suspended solids. Therefore, the spatial distribution of suspended sediments within the river section has to be known to assess the riverine sedimentary flux. Numerous studies have focused on the vertical distribution of SPM in a river channel from a theoretical or experimental perspective, but only a few were conducted so far on very large rivers. Moreover, a technique for the prediction of depth‐integrated suspended sediment fluxes in very large rivers based on sediment transport dynamics has not yet been proposed. We sampled river water along depth following several vertical profiles, at four locations on the Amazon River and its main tributaries and at two distinct water stages. Depending on the vertical profile, a one‐ to fivefold increase in SPM concentration is observed from river channel surface to bottom, which has a significant impact on the ‘depth‐averaged’ SPM concentration. For each cross section, a so‐called Rouse profile quantitatively accounts for the trend of SPM concentration increase with depth, and a representative Rouse number can be measured for each cross section. However, the prediction of this Rouse number would require the knowledge of the settling velocity of particles, which is dependent on the state of aggregation affecting particles within the river. We demonstrate that in the Amazon River, particle aggregation significantly influences the Rouse number and renders its determination impossible from grain‐size distribution data obtained in the lab. However, in each cross section, the Rouse profile obtained from the fit of the data can serve as a basis to model, at first order, the SPM concentration at any position in the river cross section. This approach, combined with acoustic Doppler current profiler (ADCP) water velocity transects, allows us to accurately estimate the depth‐integrated instantaneous sediment flux. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of fully submerged boulders on the flow structure in channels has been studied by some researchers. However, many natural streams have bed material with boulders that are not fully submerged under water. In many natural streams, boulders cover between 1% and 10% of the area of the stream reach. The effect of non-submerged boulders on the velocity profile and flow characteristics is very important for assessing riverbed deformation. The objectives of this paper are to find the pattern of velocity distribution around a non-submerged boulder and to compare it with the classical studies on flow resistance and Reynolds stress distribution in open channels. Also, by considering the variation in the Reynolds stress distribution at different locations around a non-submerged boulder, the effect of a non-submerged boulder on the estimation of shear velocity and resistance to flow has been investigated. Results indicates that inside the scour hole caused by a non-submerged boulder in a river velocity distributions are irregular. However, velocity distributions are regular outside the scour hole. The presence of the boulder causes a considerable deviation of the Reynolds shear stress from the classic distribution, showing a non-specific distribution with negative values. The classical methods for calculating shear velocity are not suitable because these methods do not give detailed velocity and Reynolds stress distributions in natural rivers with a lot of boulders. Thus, the effect of a non-submerged boulder on the estimation of the resistance to flow by considering the variations in velocity and Reynolds stress distributions at different locations around a non-submerged boulder is important and needs to be studied in a natural river instead of just in laboratory flumes. The negative values in Reynolds stress distribution around a boulder indicate that the classical methods are unable to predict resistance to flow, and also show strong turbulence inside the scour hole where the complex flow conditions present ambiguous Reynolds stress distributions. In the current study, to obtain a reasonable estimation of parameters in natural rivers, the classical method has been modified by considering velocity and Reynolds stress distributions through the boundary layer method.  相似文献   

7.
The Ejina basin, which is located in arid and semi‐arid areas of northwest China, has experienced severe environmental deterioration in the past several decades, and an exploratory project was launched by the Chinese Government in 2001 to restore this degraded ecosystem. In this study, multi‐scale remotely sensed data and field investigations were used to quantify the responses of vegetation to the implementation of integrated water management under this project. In terms of the seasonal accumulated Normalized Difference Vegetation Index (SAN) variation, (1) the vegetation in 80·4% of the oasis regions showed an increasing or recovering trend, and increasing SAN trends with a magnitude greater than 0·14 a?1 mainly resulted from cultivated land reclamation; (2) the vegetation in 91·5% of the desert regions presented an increasing trend, and the statistically significant trends mainly appeared in the middle and lower Ejina basin; (3) the vegetation in 19·6% of oasis and 5·1% of desert regions showed a decreasing or degrading trend, mainly where rivers diminished and along artificial concrete canals; and (4) opposite signs of vegetation trends occurred simultaneously along some natural rivers experiencing water reduction, with a decreasing trend generally appearing in the high SAN regions, whereas an increasing trend was seen in the low SAN regions. The broad vegetation recovery observed was due to the comprehensive improvement of the water environment, which was attributed to both the increase in runoff entering the Ejina basin and the adoption of engineering measures. Vegetation degradation in the area mainly resulted from deterioration of the local water environment, which was closely related to the problems of water management. The results of this study can be used as a reference for adjusting the current water resource management strategy to effectively restore this ecosystem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
G. Kaless  L. Mao  M. A. Lenzi 《水文研究》2014,28(4):2348-2360
Downstream hydraulic geometry relationships describe the shape of alluvial channels in terms of bankfull width, flow depth, flow velocity, and channel slope. Recent investigations have stressed the difference in spatial scales associated with these variables and thus the time span required for their adjustment after a disturbance. The aim of this study is to explore the consequences in regime models considering the hypothesis that while channel width and depth adjust quickly to changes in water and sediment supply, reach slope requires a longer time span. Three theoretical models were applied. One model incorporates an extremal hypothesis (Millar RG. 2005. Theoretical regime equations for mobile gravel‐bed rivers with stable banks. Geomorphology 64 : 207–220), and the other two are fully physically based (Ikeda S, Parker G, Kimura Y. 1988. Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resources Research 24 : 713–722; Parker G, Wilcock PR, Paola C, Dietrich W, Pitlick J. 2007. Physical basis for quasi universal relations describing bankfull hydraulic geometry of single‐thread gravel‐bed rivers. Journal of Geophysical Research 112 , DOI: 10.1029/2006JF000549). In order to evaluate the performance of models introducing the slope as an independent variable, we propose two modifications to previous models. The performance of regime models was tested against published data from 142 river reaches and new hydraulic geometry data from gravel‐bed rivers in Patagonia (Argentina) and north‐eastern Italy. Models that assume slope as a control (Ikeda et al., 1988; or Millar, 2005) predict channel depth and width reasonably well. Parker et al.'s (2007) model improved predictions because it filters the scatter in slope data with a relation slope–discharge. The extremal hypothesis model of Millar (2005) predicts comparably to the other physically based models. Millar's model was chosen to describe the recent changes in the Piave and Brenta rivers due to human intervention – mainly in‐channel gravel mining. The change in sediment supply and recovery was estimated for these rivers. This study supports the interpretation that sediment supply is the key factor guiding morphological changes in these rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Bodenfaunistische Untersuchungen in Aare und Rhein   总被引:1,自引:0,他引:1  
The results of the investigations of the river benthos, presented in part I [2], have been further analyzed with regard to statistics, saprobity and diversity. The contagious distribution of the organisms is linked with a great variance, which necessitates a big number of samples and causes problems in interpreting the counts. Different biological and diversity indices have been tested for validity; whereas the saprobic evaluation yielded α-β-mesosaprobic conditions for the river Aare and β-α-mesosaprobic conditions for the river Rhine, the diversity seems not suitable for river classification in our case. Problems concerning biological evaluation of water quality in big rivers are discussed.   相似文献   

10.
Effect of streambed sediment on benthic ecology   总被引:5,自引:2,他引:3  
Benthic macroinvertebrates have been commonly used as indicator species for assessment of aquatic ecology. Streambed sediment, or substrate, plays an important role in habitat conditions for macroinvertebrate communities. Field investigations were done to study the benthic diversity and macroinvertebrate compositions in various stream substrata. Sampling sites with different bed sediment, latitude, and climate were selected along the Yangtze River, the Yellow River, the East River, and the Juma River, in China. The results show that benthic community structures found in different substrata clearly differ, while those found in substrata of similar composition and flow conditions but in different macroclimates are similar. The study, thus, demonstrates that the benthic macroinvertebrate community is mainly affected by substrate composition and flow conditions, but is generally unaffected by latitudinal position and macroclimate. Taxa richness of the maeroinvertebrate community was found to be the highest on hydrophyte-covered cobbles, high on moss-covered bedrock, and low on clay beds and cobble beds devoid of plant biomass. Sandy beds are compact and unstable, thus, no benthic macroinvertebrates were found colonizing such substrata. Aquatic insects account for most of the macroinvertebrates collected in these rivers. Different insects dominate in different types of substrata: mainly EPT species (Ephemeroptera, Ptecoptera, Tfichoptera) in cobble, gravel, and moss-covered bedrock; and Chironomidae larvae in clay beds. The relation between the number of species in the samples and the size of the sampling area fits a power function of the species area. One square meter (lm) is suggested as the minimum sampling area. A substrate suitability index is proposed by integrating the suitability of sediment, periphyton, and benthic organic materials for macroinvertebrates. The biodiversity of macroinvertebrates increases linearly with the substrate suitability index. Benthic taxa richness increases linearly with the suitability index.  相似文献   

11.
Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three reconstructed streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realise water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.  相似文献   

12.
Tropical rivers display profound temporal and spatial heterogeneity in terms of environmental conditions. This aspect needs to be considered when designing a monitoring program for water quality in rivers. Therefore, the physico-chemical composition and the nutrient loading of the Upper Mara River and its two main tributaries, the Amala and Nyangores were monitored. Initial daily, and later a weekly monitoring schedule for 4 months spanning through the wet and dry seasons was adopted. Benthic macro-invertebrates were also collected during the initial sampling to be used as indicators of water quality. The aim of the current study was to investigate the physico-chemical status and biological integrity of the Upper Mara River basin. This was achieved by examining trends in nutrient concentrations and analyzing the structure, diversity and abundance of benthic macro-invertebrates in relation to varying land use patterns. Sampling sites were selected based on catchment land use and the level of human disturbance, and using historical records of previous water quality studies. River water pH, dissolved oxygen, electrical conductivity (EC), temperature, and turbidity were determined in situ. All investigated parameters except iron and manganese had concentration values within allowable limits according to Kenyan and international standards for drinking water. The Amala tributary is more mineralized and also shows higher levels of pH and EC than water from the Nyangores tributary. The latter, however, has a higher variability in both the total phosphorus (TP) and total nitrogen (TN) concentrations. The variability in TP and TN concentrations increases downstream for both tributaries and is more pronounced for TN than for TP. Macro-invertebrate assemblages responded to the changes in land use and water quality in terms of community composition and diversity. The study recommends detailed continuous monitoring of the water quality at shorter time intervals and to identify key macro-invertebrate taxa that can be used to monitor changes of the water quality in rivers of the Mara basin as a result of anthropogenic changes.  相似文献   

13.
Freshwater snails are widely distributed in running water systems. Most of them are feeding on biofilms attached to substrata. We used gastropods with different morphology and potentially different traits to analyse the effect of water currents and substratum roughness on the interactions between grazers and biofilms. The gastropods were exposed to naturally grown biofilms from the River Rhine that differed in age and in their artificial substratum roughness (mimicked by abrasive paper). The experiments were conducted in endless channels with paddle wheels where the current velocity could be set steplessly. The freshwater pulmonates Ancylus fluviatilis and Physella acuta as well as the freshwater prosobranchs Bithynia tentaculata and Potamopyrgus antipodarum were used as model organisms in this investigation. The time the snails remained on the test area related to the substratum roughness, and current velocity was used to compare the performance of the four snail species on different aged biofilms. In one experiment, the locomotive activity of snails was traced.Gastropods left substrata without biofilms and did not show different responses to biofilms of diverse ages with significant differences in their biochemical contents. Grazing by snails altered the biofilms in their chlorophyll-a content, ash-free dry mass, and ash mass. A current velocity above 0.12 m s−1 drove B. tentaculata, P. acuta, and P. antipodarum off the test areas, only A. fluviatilis remained unaffected by the applied current velocities (up to 0.23 m s−1). The substratum roughness had no direct influence on the retention time of snails and their locomotive activity on the substrata, whereas the chlorophyll-a content of the biofilm strongly influenced snail activity. Substratum roughness had only an indirect influence on the behaviour of snails contrary to studies on marine snail species.  相似文献   

14.
Abstract

With increased interest and requirements in surface water quality and hydrodynamics, additional information is needed about water flow in streams. The mobile OTT Qliner with acoustic Doppler technology (ADQ) provides a highly efficient and accurate way of collecting this information. For this study we completed 366 measurements of flow velocity, water depth and discharge with ADQ from September 2010 to June 2011 at 174 cross-sections in eight catchments of different sizes located in northern Germany, central Germany and southeastern China. The measurements were used to study the accuracy, reproducibility and sensitivity of the device, and to improve the hydrodynamic sampling for medium-sized rivers and channels by investigating its internal settings. The observations reported clearly show that the results of flow average, profile, layer and point values obtained with the ADQ compare very well with those of electromagnetic or ultrasonic devices. In general, the average flow velocity gives the highest agreement. Vertical velocity has a better quality than the layer velocity, which indicates a greater precision in the horizontal than in the perpendicular direction. Point velocity, the composite of vertical velocity and layer velocity, has intermediate precision. Tests on internal settings revealed that measurement is more sensitive to cell size than to time interval setting. A cell size to depth ratio of between 0.1 and 0.2 m produced the highest reliability. A measurement period of 30 s is needed for velocities faster than 0.3 m/s; for shallow and slow-flowing rivers, an interval of 50 s or even greater is recommended. The closer the measured points were to the river bank or bed, the greater the measurement error. The river bed can also influence the measurement more distinctly than the river bank.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Song, S., Schmalz, B., Hörmann, G., and Fohrer, N., 2012. Accuracy, reproducibility and sensitivity of acoustic Doppler technology for velocity and discharge measurements in medium-sized rivers. Hydrological Sciences Journal, 57 (8), 1626–1641.  相似文献   

15.
The relationships between the diversity of invertebrate communities and the altitude of sampling sites were analysed in 438 benthic samples, collected between 1982 and 1991, in 56 rivers of western Switzerland. Diversity, estimated from total number of taxa (genus or family) and from number of taxa intolerant of pollution, was positively correlated with increasing altitude. In contrast, density of human population and the level of organic pollution were negatively correlated with increasing altitude. Therefore, the upstream increase of invertebrate diversity was attributed to the decrease of human population which is the main source of organic pollution. In this study, altitude was used, instead of organic pollution, to predict diversity. Empirical relationships between diversity and altitude were applied to surveys of water quality to describe the general altitudinal pattern characteristic for each region and to single out anomalous sites and rivers. In addition, changes in the altitudinal patterns of diversity can be used to monitor the recovery of rivers from pollution.  相似文献   

16.
According to common understanding, the advective velocity of a conservative solute equals the average linear pore-water velocity. Yet direct monitoring indicates that the two velocities may be different in heterogeneous media. For example, at the Camp Dodge, Iowa, site the advective velocity of discrete Cl- plumes was less than one tenth of the average pore-water velocity calculated from Darcy's law using the measured hydraulic gradient, effective porosity, and hydraulic conductivity (K) from large-scale three-dimensional (3D) techniques, e.g., pumping tests. Possibly, this difference reflects the influence of different pore systems, if the K relevant to transient solute flux is influenced more by lower-K heterogeneity than a steady or quasi-steady water flux. To test this idea, tracer tests were conducted under controlled laboratory conditions. Under one-dimensional flow conditions, the advective velocity of discrete conservative solutes equaled the average pore-water velocity determined from volumetric flow rates and Darcy's law. In a larger 3D flow system, however, the same solutes migrated at approximately 65% of the average pore-water velocity. These results, coupled with direct observation of dye tracers and their velocities as they migrated through both homogeneous and heterogeneous sections of the same model, demonstrate that heterogeneity can slow the advective velocity of discrete solute plumes relative to the average pore-water velocity within heterogeneous 3D flow sytems.  相似文献   

17.
This paper reports the application of a two‐dimensional hydraulic model to a braided reach of the Avoca River, New Zealand. Field measurements of water surface elevation, depth and velocity obtained at low flow were used to validate the model and to optimize the parameterization of bed friction. The main systematic trends in the measured flow variables are reproduced by the model. However, field data are characterized by greater spatial variability than model output reflecting differences in the scale of processes measured in the field and represented by the model. Additional model runs were conducted to simulate flow patterns within the study reach at five higher discharges. The purpose of these simulations was to evaluate the potential for using two‐dimensional hydraulic models to quantify the reach‐scale hydraulic characteristics of braided rivers and their dependence on discharge. Changes in flow depth and velocity with increasing discharge exhibit trends that are consistent with the results of previous field investigations, although the tendency for the wetted area of the braidplain within particular depth and velocity categories to remain fixed as discharge rises, as has been noted for several braided rivers in New Zealand, was not observed. Modelled shear stress frequency distributions fit gamma functions that incorporate a distribution shape parameter, the value of which follows clear systematic trends with rising discharge. These results illustrate both the problems of, and potential for, using two‐dimensional hydraulic models in braided river applications. This leads to something of a paradox in that while such models provide a means of generating hydraulic information that would be difficult to obtain in the field at an equivalent spatial resolution, they are, due to the problems inherent to data collection, difficult to validate conclusively. Despite this limitation, the application of spatially distributed models to investigate relationships between discharge and reach‐scale form and process variables appears to have considerable potential. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
It is of major scientific interests to determine the parameters of momentum, heat and vapor exchange in the planetary boundary layer in order to study the effects of ocean-ice-atmosphere interactions and their feedback mechanisms on global climate[1]. Lin…  相似文献   

19.
An analysis of the variation characteristics and evolutionary trends in the runoff of five rivers in the Poyang Lake Basin was conducted using the MK trend test, Morlet wavelet transforms, correlation analyses, and other methods. For 1956–2011, the inflow runoff displays small, statistically insignificant trends. However, for 2000–2011, significant downward trends are present. River runoff in the basin is significantly correlated with precipitation, while water intake and use is less influential; the most significant impact on river runoff is climate variability. To analyse the effects of water conservancy project scheduling and operation, we also compare the inflow and outflow runoff processes of typical large reservoirs before and after peak reservoir construction. The scheduling and operation of large reservoirs in the five rivers is known to play a supplementary role in dry season inflow runoff. The recent reduction in inflow runoff was mainly caused by basin precipitation; reasonable scheduling of water conservancy projects in the five rivers plays a positive role in safeguarding the water required by the dry season ecosystem in Poyang Lake.  相似文献   

20.
Sarasota County is one of 10 generalized areas of the continental United States known to haw high concentrations of naturally occurring radium in fresh ground water (Chandler 1989). Various authors have conducted investigations to examine the distribution of radium in ground water, rivers, and estuaries. They concluded that ground water was the source of radium, but rivers were also enriched with radium as a result of the interaction with ground water. The Glulf of Mexico also has areas with radium enrichment resulting from geothermal springs with concentrations as high as 51 picocuries per liter. During 1986 and 1987. the Health and Rehabilitative Services of the state of Florida collected ground water data for radium analysis of private drinking water wells. These data were used to develop a contour map of radium-226 concentrations for coastal Sarasota County.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号