首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

2.
This study was conducted to estimate macropore space, macropore flow and matrix flow in an experimental forest plot in the Ouachita Mountains of Arkansas. Lateral soil water fluxes and soil capillary potentials were observed in the isolated plot during applied rainfall experiments. Rainfalls were applied 17 times during the period 17 July to 10 October 1991. The subsurface hydrograph separation technique was used to estimate macropore space, macropore flux and matrix flux. The boundary between macropore and matrix flow was statistically determined by covariance analysis. The maximum estimated lateral macropore space was approximately 0.006 (cm3 cm?3). The maximum estimated lateral macropore and matrix flow were 0.042 and 0.00066 cm s?1, respectively. This report also emphasizes the need for further research on the hydrograph separation procedure for estimating macropores and macropore flow.  相似文献   

3.
The effects of vegetation root distribution on near‐surface water partitioning can be two‐fold. On the one hand, the roots facilitate deep percolation by root‐induced macropore flow; on the other hand, they reduce the potential for deep percolation by root‐water‐uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (Kmatrix below 10?7 m/s), while it is insignificant in soils with a Kmatrix larger than 10?5 m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root‐macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay‐rich soil layer without root‐induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low‐permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Current conceptual runoff models hypothesize that stormflow generation on the Canadian Shield is a combination of subsurface stormflow and saturation overland flow. This concept was tested during spring runoff in a small (3.3 ha) headwater basin using: (1) isotopic and chemical hydrograph separation and (2) field mapping and direct tracing of saturated areas. Isotopic and chemical hydrograph separation indicated three runoff components: (1) pre-melt subsurface flow; (2) subsurface flow of new (event) water; and (3) direct precipitation on to saturated areas (DPS). During early thaw-freeze cycles, their relative contributions to total flow remained constant (65 per cent, 30 per cent, and 5 per cent respectively). It is hypothesized that lateral flow along the bedrock/mineral soil interface, possibly through macropores, supplied large volumes of subsurface flow (of both old and new water) rapidly to the stream channel. Much higher contributions of DPS were observed during an intensive rain-on-snow event (15 per cent of total flow). Mapping and direct tracing of saturated areas using lithium bromide, suggested that saturated area size was positively correlated to stream discharge but its response lagged behind that of discharge. These observations suggest that the runoff mechanisms, and hence the sources of stream flow, will vary depending on storm characteristics.  相似文献   

5.
Abstract

A physically-based hillslope hydrological model with shallow overland flow and rapid subsurface stormflow components was developed and calibrated using field experiments conducted on a preferential path nested hillslope in northeast India. Virtual experiments were carried out to perform sensitivity analysis of the model using the automated parameter estimation (PEST) algorithm. Different physical parameters of the model were varied to study the resulting effects on overland flow and subsurface stormflow responses from the theoretical hillslopes. It was observed that topographical shapes had significant effects on overland flow hydrographs. The slope profiles, surface storage, relief, rainfall intensity and infiltration rates primarily controlled the overland flow response of the hillslopes. Prompt subsurface stormflow responses were mainly dominated by lateral preferential flow, as soil matrix flow rates were very slow. Rainfall intensity and soil macropore structures were the most influential parameters on subsurface stormflow. The number of connected soil macropores was a more sensitive parameter than the size of macropores. In hillslopes with highly active vertical and lateral preferential pathways, saturation excess overland flow was not evident. However, saturation excess overland flow was generated if the lateral macropores were disconnected. Under such conditions, rainfall intensity, duration and preferential flow rate governed the process of saturation excess overland flow generation from hillslopes.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

6.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Soil macropore networks are subsurface connected void spaces caused by processes such as fracture of soils, micro‐erosion and fauna burrows. Axial X‐ray computed tomography (CT) scanning provides a convenient means of recording the spatial structure of soil macropore networks. The objective of this study were to (1) based on CT technique and GIS digitized image method, construction a new technique for tracing, visualizing and measuring the soil macropore networks and (2) investigate the effects of farming activities on soil macropore networks characteristics. Our technique uses left‐turning and nine‐direction judgment methods, a combination of the layer‐by‐layer analysis method and the up‐down tracking algorithm. The characteristics for the overall structure patterns of macropores, the spatial distribution of the macropore networks and each single macropore network can be conveniently identified by our technique. Eight undisturbed soil columns from fields with two distinct land uses (under cultivation and not been cultivated) and four different depths (0–20, 20–40, 40–60 and 60–80 cm) were investigated. The soil columns were scanned using X‐ray CT at a voxel resolution of 0.075 × 0.075 × 3.000 mm. Results indicate that farming activities can destroy the initial structure of macropores, and those remaining are mainly small‐sized and medium‐sized networks with lower extension and hydraulic conductivity. The network properties show a significant difference between upper and lower layer. The results can provide beneficial reference to further research centered on non‐equilibrium flow prediction and chemical transport modeling in field soils. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Macropores are important preferential pathways for the migration of water and contaminants through the vadose zone. The objective of this study was to examine small‐scale preferential flow processes during infiltration in macroporous, low permeability soils. A series of tension infiltration tests were conducted using Brilliant Blue dye tracer at two field sites in southwestern Ontario, Canada. The maximum applied pressure head was varied for each test and the resulting dye stain patterns and macropore networks were characterized by excavation, mapping, photography, and image analysis. Worm burrows were the dominant macropore type, with average macropore densities exceeding 400 m?2 and peak densities of more than 750 m?2 at 30 cm depth at both sites. Flow in macropores became significant at infiltration pressures > ? 3 cm, with corresponding increases in infiltration rate, soil water content variability (spatially and temporally), and depth of dye staining. The results demonstrated clear evidence for partially saturated macropore flow under porewater tension conditions and the associated importance of macropore–matrix interaction in controlling this flow. Field observations of transient infiltration showed that film and rivulet flow along macropores yielded vertical flow velocities exceeding 40 m d?1. Simple calculations showed that film flow along the walls and corners of irregularly shaped macropores could explain the observed results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Topographic controls upon soil macropore flow   总被引:1,自引:0,他引:1  
Macropores are important components of soil hydrology. The spatial distribution of macropore flow as a proportion of saturated hydraulic conductivity was tested on six humid–temperate slopes using transects of tension infiltrometer measurements. Automated water table and overland flow monitoring allowed the timing of, and differentiation between, saturation‐excess overland flow and infiltration‐excess overland flow occurrence on the slopes to be determined and related to tension‐infiltrometer measurements. Two slopes were covered with blanket peat, two with stagnohumic gleys and two with brown earth soils. None of the slopes had been disturbed by agricultural activity within the last 20 years. This controlled the potential for tillage impacts on macropores. The proportion of near‐surface macropore flow to saturated hydraulic conductivity was found to vary according to slope position. The spatial patterns were not the same for all hillslopes. On the four non‐peat slopes there was a relationship between locations of overland flow occurrence and reduced macroporosity. This relationship did not exist for the peat slopes investigated because they experienced overland flow across their whole slope surfaces. Nevertheless, they still had a distinctive spatial pattern of macropore flow according to slope position. For the other soils tested, parts of slopes that were susceptible to saturation‐excess overland flow (e.g. hilltoes or flat hilltops) tended to have least macropore flow. To a lesser extent, for the parts of slopes susceptible to infiltration‐excess overland flow, the proportion of macropore flow as a component of infiltration was also smaller compared with the rest of the slope. The roles of macropore creation and macropore infilling by sheet wash are discussed, and it is noted that the combination of these may result in distinctive topographically controlled spatial patterns of macropore flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Markus Weiler   《Journal of Hydrology》2005,310(1-4):294-315
Simulating infiltration in soils containing macropores still provides unsatisfactory results, as existing models seem not to capture all relevant processes. Recent studies of macropore flow initiation in natural soils containing earthworm channels revealed a distinct flow rate variability in the macropores depending on the initiation process. When macropore flow was initiated at the soil surface, most of the macropores received very little water while a few macropores received a large proportion of the total inflow. In contrast, when macropore flow was initiated from a saturated or nearly saturated soil layer, macropore flow rate variation was much lower. The objective of this study was to develop, evaluate, and test a model, which combines macropore flow variability with several established approaches to model dual permeability soils. We then evaluate the INfiltration–INitiation–INteraction Model (IN3M) to explore the influence of macropore flow variability on infiltration behavior by performing a sensitivity analysis and applying IN3M to sprinkling and dye tracer experiments at three field sites with different macropore and soil matrix properties. The sensitivity analysis showed that the flow variability in macropores reduces interaction between the macropores and the surrounding soil matrix and thus increases bypass flow, especially for surface initiation of macropore flow and at higher rainfall intensities. The model application shows reasonable agreement between IN3M simulations and field data in terms of water balance, water content change, and dye patterns. The influence of macropore flow variability on the hydrological response of the soil was considerable and especially pronounced for soils where initiation occurs at the soil surface. In future, the model could be applied to explore other types of preferential flow and hence to get a generally better understanding of macropore flow.  相似文献   

11.
12.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Effect of macropores on soil freezing and thawing with infiltration   总被引:3,自引:0,他引:3       下载免费PDF全文
An understanding of heat transport and water flow in unsaturated soils experiencing freezing and thawing is important when considering hydrological and thermal processes in cold regions. Macropores, such as cracks, roots, and animal holes, provide efficient conduits for enhanced infiltration, resulting in a unique distribution of water content. However, the effects of macropores on soil freezing and thawing with infiltration have not been well studied. A one‐directional soil‐column freezing and thawing experiment was conducted using unsaturated sandy and silt loams with different sizes and numbers of macropores. During freezing, macropores were found to retard the formation of the frozen layer, depending on their size and number. During thawing, water flowed through macropores in the frozen layer and reached the underlying unfrozen soil. However, infiltrated water sometimes refroze in a macropore. The ice started to form at near inner wall of the macropore, grew to the centre, and blocked flow through the macropore. The blockage ice in the macropore could not melt until the frozen layer disappeared. Improving a soil freezing model to consider these macropore effects is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The effect of bedrock permeability on subsurface stormflow initiation and the hillslope water balance is poorly understood. Previous hillslope hydrological studies at the Panola Mountain Research Watershed (PMRW), Georgia, USA, have assumed that the bedrock underlying the trenched hillslope is effectively impermeable. This paper presents a series of sprinkling experiments where we test the bedrock impermeability hypothesis at the PMRW. Specifically, we quantify the bedrock permeability effects on hillslope subsurface stormflow generation and the hillslope water balance at the PMRW. Five sprinkling experiments were performed by applying 882–1676 mm of rainfall over a ~5·5 m × 12 m area on the lower hillslope during ~8 days. In addition to water input and output captured at the trench, we measured transpiration in 14 trees on the slope to close the water balance. Of the 193 mm day?1 applied during the later part of the sprinkling experiments when soil moisture changes were small, <14 mm day?1 was collected at the trench and <4 mm day?1 was transpired by the trees, with residual bedrock leakage of >175 mm day?1 (91%). Bedrock moisture was measured at three locations downslope of the water collection system in the trench. Bedrock moisture responded quickly to precipitation in early spring. Peak tracer breakthrough in response to natural precipitation in the bedrock downslope from the trench was delayed only 2 days relative to peak tracer arrival in subsurface stormflow at the trench. Leakage to bedrock influences subsurface stormflow at the storm time‐scale and also the water balance of the hillslope. This has important implications for the age and geochemistry of the water and thus how one models this hillslope and watershed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

17.
Hillslope hydrological modelling is considered to be of great importance for the understanding and quantification of hydrological processes in hilly or mountainous landscapes. In recent years a few comprehensive hydrological models have been developed at the hillslope scale which have resulted in an advanced representation of hillslope hydrological processes (including their interactions), and in some operational applications, such as in runoff and erosion studies at the field scale or lateral flow simulation in environmental and geotechnical engineering. An overview of the objectives of hillslope hydrological modelling is given, followed by a brief introduction of an exemplary comprehensive hillslope model, which stimulates a series of hydrological processes such as interception, evapotranspiration, infiltration into the soil matrix and into macropores, lateral and vertical subsurface soil water flow both in the matrix and preferential flow paths, surface runoff and channel discharge. Several examples of this model are presented and discussed in order to determine the model's capabilities and limitations. Finally, conclusions about the limitations of detailed hillslope modelling are drawn and an outlook on the future prospects of hydrological models on the hillslope scale is given.The model presented performed reasonable calculations of Hortonian surface runoff and subsequent erosion processes, given detailed information of initial soil water content and soil hydraulic conditions. The vertical and lateral soil moisture dynamics were also represented quite well. However, the given examples of model applications show that quite detailed climatic and soil data are required to obtain satisfactory results. The limitations of detailed hillslope hydrological modelling arise from different points: difficulties in the representations of certain processes (e.g. surface crusting, unsaturated–saturated soil moisture flow, macropore flow), problems of small‐scale variability, a general scarcity of detailed soil data, incomplete process parametrization and problems with the interdependent linkage of several hillslopes and channel–hillslope interactions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The advance of a chemical weathering front into the bedrock of a hillslope is often limited by the rate weathering products that can be carried away, maintaining chemical disequilibrium. If the weathering front is within the saturated zone, groundwater flow downslope may affect the rate of transport and weathering—however, weathering also modifies the rock permeability and the subsurface potential gradient that drives lateral groundwater flow. This feedback may help explain why there tends to be neither “runaway weathering” to great depth nor exposed bedrock covering much of the earth and may provide a mechanism for weathering front advance to keep pace with incision of adjacent streams into bedrock. This is the second of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory. Here, we show how a simplified kinetic model of 1‐D rock weathering can be extended to consider lateral flow in a 2‐D hillslope. Exact and approximate analytical solutions for the location and thickness of weathering within the hillslope are obtained for a number of cases. A location for the weathering front can be found such that lateral flow is able to export weathering products at the rate required to keep pace with stream incision at steady state. Three pathways of solute export are identified: “diffusing up,” where solutes diffuse up and away from the weathering front into the laterally flowing aquifer; “draining down,” where solutes are advected primarily downward into the unweathered bedrock; and “draining along,” where solutes travel laterally within the weathering zone. For each pathway, a different subsurface topography and overall relief of unweathered bedrock within the hillslope is needed to remove solutes at steady state. The relief each pathway requires depends on the rate of stream incision raised to a different power, such that at a given incision rate, one pathway requires minimal relief and, therefore, likely determines the steady‐state hillslope profile.  相似文献   

19.
Todd Redding  Kevin Devito 《水文研究》2010,24(21):2995-3010
Rainfall simulation experiments by Redding and Devito ( 2008 , Hydrological Processes 23: 4287–4300) on two adjacent plots of contrasting antecedent soil moisture storage on an aspen‐forested hillslope on the Boreal Plain showed that lateral flow generation occurred only once large soil storage capacity was saturated combined with a minimum event precipitation of 15–20 mm. This paper extends the results of Redding and Devito ( 2008 , Hydrological Processes 23: 4287–4300) with detailed analysis of pore pressure, soil moisture and tracer data from the rainfall simulation experiments, which is used to identify lateral flow generation mechanisms and flow pathways. Lateral flow was not generated until soils were wet into the fine textured C horizon. Lateral flow occurred dominantly through the clay‐rich Bt horizon by way of root channels. Lateral flow during the largest event was dominated by event water, and precipitation intensity was critical in lateral flow generation. Lateral flow was initiated as preferential flow near the soil surface into root channels, followed by development of a perched water table at depth, which also interacted with preferential flow pathways to move water laterally by the transmissivity feedback mechanism. The results indicate that lateral flow generated by rainfall on these hillslopes is uncommon because of the generally high available soil moisture storage capacity and the low probability of rainfall events of sufficient magnitude and intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Measurements have been made of unsaturated and saturated lateral soil water flow on a convex hill-slope with a good soil cover and impermeable bedrock during natural rainstorms. The hydraulics of flow are examined in detail with particular reference to the role of breaks in vertical permeability, the change from saturated to unsaturated flow and the velocity of flow. In this instance, after rainfall slope flow is dominated by vertical unsaturated movement towards the profile base. Preceding upslope moisture gradients result in the growth of a zone of soil saturation upwards from the slope base. Slope discharge, through the B and B/C horizons, is related to the form of the saturation zone, within which flow is lateral, according to Darcy's law. The time required for vertical percolation and the low hydraulic conductivity of the lower soil horizons result in a hillslope hydrograph which is delayed and attenuated and cannot be regarded as stormflow. During drainage the saturation zone contracts and is replaced by a lateral unsaturated flow system at the profile base which supplies discharge from the B/C horizon for up to 42 days without further recharge. It is concluded that, in general, either distinct soil horizons or impermeable bedrock are essential for the initiation of lateral flow. Saturated flow is likely to dominate hillslope hydrographs through non-capillary pore spaces but these may be integrated to the point where Darcy's law still holds. Although lateral soil water flow must be a widespread phenomenon, it is unlikely to provide storm runoff to the stream unless saturated conditions are generated within the organic horizons for flow within the lower soil horizons is dominated by non-Darcian flow through non-capillary spaces in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号