首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The playas (saline lakes) situated in the Thar Desert, north-west India, provide prominent examples of alkaline brine and varying assemblages of detrital and evaporite mineralogy. The eastern margin of the desert is relatively semi-arid, whereas the central to western region is arid to hyper-arid in nature. Rare earth elements (REEs) systematics in the sediments of nine different playas of the Thar Desert were studied to understand the provenance of the sediments and the intensity of chemical weathering in the region. Based on the REE patterns, fractionation of light REE (LREE) (La/Sm)N and heavy REE (HREE) (Gd/Yb)N, and Eu anomaly (Eu/Eu*), the upper continental crust normalised playa sediments are divided into two different groups. The eastern margin playa sediments show homogeneous REE contents, relatively positive Eu anomaly and depleted HREE values, whereas the western arid core playa sediments have highly variable REE contents, relatively negative Eu anomaly and similarly fractioned LREE and HREE patterns. The dissimilarity in the degree of HREE fractionations both in the eastern and western playa sediments is attributed to the differential distribution of minerals, depending upon their resistance to chemical weathering. It is believed that the relatively higher abundance of REE bearing heavy minerals and the presence of higher amounts of evaporites influence the large variation of REE distribution and enriched HREE in the western playa sediments. Apart from the relatively higher abundance of heavy minerals, the presence of rock fragments of variable petrographic character and roundness mirror the lower rock–water interaction in the arid western region. The presence of well-rounded metamorphic rock fragments and minerals, sourced from the eastern margin Aravalli mountains, indicates that the playas of the entire desert get the detrital and dissolved material mainly from the Aravalli mountains. Additionally, the western playas receive sediments from their surrounding Proterozoic and Mesozoic formations. This interpretation is supported by the presence of angular rock fragments of basalt, rhyolite and limestone in the western playas.  相似文献   

2.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   

3.
煤系高岭岩的地球化学判别标志   总被引:7,自引:0,他引:7  
朱如凯 《地质论评》1997,43(2):121-130
本文主要研究了煤系高岭岩的微量、稀土、氧同位素地球化学特征。根据高岭岩产出层序、岩石学、矿物学、地球化学特征的研究,将煤系高岭岩分为两类:(1)铝土质高岭岩,微量元素含量、稀土总量,氧同位素值高,稀土配分模式与典型北美页岩相似,Eu负异常,反映其源岩为风化壳化学风化作用产物。(2)夹矸高岭岩,微量元素含量,稀土总量,氧同位素值低,稀土配分模式部分与典型北美页岩相似,反映其源岩与铝土质高岭岩类似;部  相似文献   

4.
Shales of the ∼2.7 Ga Zeederbergs Formation, Belingwe greenstone belt, Zimbabwe, form thin (0.2-2 m) horizons intercalated with submarine lava plain basalts. Shales of the overlying Cheshire Formation, a foreland basin sedimentary sequence, form 1-100 m thick units intercalated with shallow-water carbonates and deep-water, resedimented basalt pebble conglomerates. Zeederbergs shale is characterized by high contents of MgO and transition metals and low concentrations of K2O and LILE as compared to average Phanerozoic shale, indicative of an ultramafic to mafic source terrain. Cheshire shales have similar major and trace element contents, but MgO and transition metals are less enriched and the LILE are less depleted. Zeederbergs shales have smoothly fractionated REE patterns (LaN/YbN = 2.84-4.45) and no significant Eu anomaly (Eu/Eu* = 0.93-0.96). REE patterns are identical to those of the surrounding basaltic rocks, indicating local derivation from submarine reworking. Cheshire shales have rather flat REE patterns (LaN/YbN = 0.69-2.19) and a small, negative Eu anomaly (average Eu/Eu* = 0.85), indicative of a mafic provenance with minor contributions of felsic detritus. A systematic change in REE patterns and concentrations of transition metals and HFSE upwards in the sedimentary succession indicates erosion of progressively more LREE-depleted basalts and ultramafic volcanic rocks, followed by unroofing of granitoid crust. Weathering indices confirm the submarine nature of Zeederbergs shale, whereas Cheshire shale was derived from a source terrain subjected to intense chemical weathering.  相似文献   

5.
郭文琳  苏文博 《现代地质》2014,28(2):243-255
最近在河北涞水紫石口剖面的中元古界铁岭组-下马岭组界线(~1400 Ma)附近,发现了一套保存完好的碳酸盐岩古风化壳。野外观测和岩石矿物学研究显示,该古风化壳的岩性以含褐铁矿的铁质泥岩和伊利石粘土岩为主。相对上地壳平均化学组分来说,古风化壳的主量元素氧化物中Al2O3、TiO2、Fe2O3和K2O富集,SiO2轻微亏损,CaO、MgO和Na2O强烈亏损;微量元素中Sc、Cu、Ga、Zr、Hf、Nb、Ta、In、Th、Li、V、Zn、Rb、Cs、W、Pb、U、Mo和Bi等化学性质稳定或易吸附于粘土中的元素含量接近上地壳平均化学组分值或呈不同程度富集,易溶元素Cr、Sr和Cd相对亏损;稀土元素全部富集,轻稀土元素与重稀土元素分异程度大,Ce正异常,Eu负异常。U/Th、Fe3+/Fe2+、Ce的正异常、化学蚀变指数与风化淋滤指数等多种指标都指示该古风化壳是在强氧化的中等到强烈的风化淋滤程度条件下形成。上述研究表明,在中元古代盖层纪(Calymmian Period,1600~1400 Ma)与延展纪(Ectasian Period,1400~1200 Ma)之交,剖面所在的华北克拉通北部应属于温暖湿润的热带-亚热带气候。  相似文献   

6.
The release of Pb and rare earth elements (REE) during granitoid weathering was investigated through dissolution experiments of fresh granite and soil samples. Two aliquots of a granite sample from the El-Capitan Granite, Sierra Nevada, California, were leached several times using a dilute acid at pH = 1. The results of the experiment were compared with Pb and REE data from soils developed on the same rock. During the early stages of granitoid dissolution, Pb and REE were preferentially released from some of the accessory phases (i.e., allanite, sphene, and apatite). This caused higher 206Pb/207Pb and 208Pb/207Pb values and different REE patterns in solution compared with the rock values. Based on Pb isotopes and REE patterns, three stages of rock dissolution can be identified. In the first stage the dissolution of allanite dominates the release of Pb and REE from accessory phases, as 208Pb/207Pb, Ce/Pb, and chondrite-normalized Ce/Yb ratios in solution increase and approach the values of allanite. In the second stage, the dissolution of apatite and sphene become more significant. In the third stage, the isotopic ratios of Pb and the normalized-REE patterns reflect the depletion of accessory phases and the increase in the rate of feldspar dissolution. According to our estimate (based on Si release from the rock) all three stages account for the first 500 kyr of granitoid weathering.Using the isotopic ratios of Pb, major elemental compositions, and REE concentrations both in the experimental solutions and in the soil we were able to establish the following order of the weathering rates of accessory phases: allanite > apatite > sphene. In addition, we have demonstrated that biotite is significantly less resistant to weathering than hornblende under acidic conditions, and is probably dissolved completely after approximately 500 kyr of rock weathering. We also suggest that within 500 kyr of granitoid weathering K-feldspar accounts for 15% of the released K.  相似文献   

7.
An in situ weathering profile overlying chlorite schists in the Mbalmayo-Bengbis formations (South Cameroon) was chosen for the study of the behaviour of REE and the evaluation of geochemical mass balance. After physical and mineralogical studies, the chlorite schists and the undisturbed weathered materials were chemically analyzed for major elements (X-ray fluorescence and titrimetry) and REE (ICP-MS). The behaviour of the REE in the Mbalmayo weathering system was established in comparison with the REE of the reference parent rock. Mass balance calculations were applied to both major elements and REE. The mineralogy of the materials was determined with the aid of a Philips 1720, diffractometer. The chlorite schists of the Mbalmayo sector show low REE contents (Σ=153.44 ppm). These rocks are relatively rich in LREE (about 125 times the chondritic value) and relatively poor in HREE (about 20 times the chondritic value). The REE diagram normalized to chondrites shows a slightly split graph ((La/Yb)N=6.18) with marked enrichment in LREE (LREE/HREE=9.50) in relation to HREE. Moreover, these spectra do not present any Ce anomaly, but a slightly positive Eu anomaly. The imperfectly evolved profile, whose materials are genetically linked, shows an atypical behaviour of REE. In effect, the LREE are more mobile than the HREE during weathering ((La/Yb)NASC<1) with weak Ce anomalies. This has been rarely reported in lateritic profiles characterized by higher HREE mobility than LREE during weathering processes with high Ce anomalies. This is either due to the difference in the stability of REE-bearing minerals, or to the weak acidic to basic pH conditions (6.70<pH<7.80), or even due to the average evolution of the weathering materials. The pathway of the REE along the profile is as follows: (1) leaching in the saprolites and summit of the profile, except for Ce, which precipitates very weakly in the nodular materials and the coarse saprolite materials, (2) at the base of the profile, solutions come in contact with chlorite schist formations, at this level, the pH increases (pH=7.79), HREE and a part of LREE partially void of Ce precipitate and (3) the other part of LREE precipitates further up in the profile. The geochemical mass balance calculations reveal that these elements are leached in the same phases as the relatively high Si, Al, K and Fe2+ contents.  相似文献   

8.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

9.
《Chemical Geology》2004,203(1-2):29-50
The aim of this study is to characterize the evolution of the rare earth elements (REE) in the Pingba red residua on karst terrain of Yunnan-Guizhou Plateau. The in-situ weathering and the two-stage development of the profile had been inferred from REE criterions. The REE were significantly fractionated, and Ce was less mobilized and separated from the other REEs at the highly enriched top of the profile. This is consistent with the increase of oxidation degree in the regolith. And it is also suggested that the wet/dry climate change during chemical weathering caused Ce alternative change between enrichment and invariance in the upper regolith. Chondrite-normalized REE distribution patterns for samples from dolomites and the lower regolith are characteristic of MREE enrichment and remarkable negative Ce-anomalies patterns (similar to the convex-up REE patterns). The following processes are interpreted for the patterns in this study: (1) the accumulation of MRRE-rich minerals in dolomite dissolution, (2) water–rock interaction in the weathering front, and (3) more leaching MREE from the upper part of the profile. The latter two explanations are considered as the dominant process for the formation of the REE patterns. Samples from the soil horizon exhibit typical REE distribution patterns of the upper crust, i.e., LaN/YbN=10 and Eu/Eu*=0.65. All data indicate that the leaching process is very important for pedogenesis in this region. The experiments demonstrating that abnormal enrichment of REE at the upper regolith–bedrock interface is caused by a combination of volume change, accumulation of REE-bearing minerals, leaching of REE from the upper regolith, and water–rock interaction during rock–soil alteration processes. Our results support the conclusion that the weathering profile represents a large, continental elemental storage reservoir, whereas REE enrichment occurs under favorable conditions in terms of stable tectonics, low erosion and rapid weathering over sufficiently long time.  相似文献   

10.
The watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) is a karstic area. Rare earth elements (REEs) of dissolved loads, suspended particulate material (SPM) and sediments of riverbed are first synthetically reported to investigate REE geochemistry in the three phases in karstic watershed during the high-flow season. Results show that the low dissolved REE concentrations in the CQW are attributed to these rivers draining carbonate rocks. The dissolved REE have significant negative Eu anomaly and coexistence of middle and light REE (MREE??PAAS-normalized La N /Sm N and Gd N /Yb N ; LREE??PAAS-normalized La N /Yb N )-enrichment, which are due to the dissolution of impure Triassic carbonates. REE concentrations in most of SPM exceed that of sediments in the CQW and the average continental crust (UCC). The SPM and the sediments show some common features: positive Eu, Ce anomalies, and MREE enrichment. The controls on the patterns seem to be from weathering profiles: the oxidation state, the REE-bearing secondary minerals (cerianite, potassium feldspar and plagioclase), which are also supported by the evidence of Y/Ho fractionations in the three phases.  相似文献   

11.
The behaviour of major and trace elements have been studied along two serpentinite weathering profiles located in the Kongo-Nkamouna and Mang North sites of the Lomié ultramafic complex.The serpentinites are characterized by high SiO2 and MgO contents, very low trace, rare earth and platinum-group element contents. Lanthanide and PGE contents are higher in the Nkamouna sample than in Mang North. Normalized REE patterns according to the CI chondrites reveal that: (i) all REE are below chondrites abundances in the Mang North sample; (ii) the (La/Yb)N ratio value is higher in the Nkamouna sample (23.72) than in the Mang one (1.78), this confirms the slightly more weathered nature of the Nkamouna sample. Normalized PGE patterns according to the same CI chondrites reveal a negative Pt anomaly in the Mang sample. The Nkamouna sample is characterized by a flat normalized PGE pattern.All element contents increase highly from the parent rock to the coarse saprolite.In the weathering profiles, Fe2O3 contents decrease from the bottom to the top contrarily to Al2O3, SiO2 and TiO2. The contents of alkali and alkaline oxides are under detection limit.Concerning trace elements, Cr, Ni, Co, Cu, Zn and Sc decrease considerably from the bottom to the top while Zr, Th, U, Be, Sb, Sn, W, Ta, Sr, Rb, Hf, Y, Li, Ga, Nb and Pb increase towards the clayey surface soil. Chromium, Ni and Co contents are high in the weathered materials in particular in the saprolite zone and in the nodules.REE contents are high in the weathered materials, particularly in Nkamouna. Their concentrations decrease along both profiles. Light REE are more abundant than heavy REE. Normalized REE patterns according to the parent rock reveal positive Ce anomalies in all the weathered materials and negative Eu anomalies only at the bottom of the coarse saprolite (Nkamouna site). Positive Ce anomalies are higher in the nodular horizon of both profiles. An additional calculation method of lanthanide anomalies, using NASC data, confirms positive Ce anomalies ([Ce/Ce*]NASC = 1.15 to 60.68) in several weathered materials except in nodules ([Ce/Ce*]NASC = 0.76) of the upper nodular horizon (Nkamouna profile). The (La/Yb)N ratios values are lower in the Nkamouna profile than in Mang site.PGE are more abundant in the weathered materials than in the parent rock. The highest contents are obtained in the coarse saprolite and in the nodules. The elements with high contents along both profiles are Pt (63–70 ppb), Ru (49–52 ppb) and Ir (41 ppb). Normalized PGE patterns show positive Pt anomalies and negative Ru anomalies.The mass balance evaluation, using thorium as immobile element, reveals that:
– major elements have been depleted along the weathering profile, except for Fe, Mn and Ti that have been enriched even only in the coarse saprolite;
– all the trace elements have been depleted along both profiles, except for Cr, Co, Zn, Sc, Cu, Ba, Y, Ga, U and Nb that have been enriched in the coarse saprolite;
– rare earth elements have been abundantly accumulated in the coarse saprolite, before their depletion towards the top of the profiles;
– platinum-group elements have been abundantly accumulated in the coarse saprolite but have been depleted towards the clayey surface soil.
Moreover, from a pedogenetical point of view, this study shows that the weathering profiles are autochtonous, except in the upper part of the soils where some allochtonous materials are revealed by the presence of zircon grains.  相似文献   

12.
《Applied Geochemistry》2000,15(9):1369-1381
Thirty-eight samples of stream sediments draining high-grade metamorphic rocks in the Walawe Ganga (river) Basin, Sri Lanka, were analysed for their REE contents, together with samples of metamorphic suites from the source region. The metamorphic rocks are enriched in light REE (LREE) compared to heavy REE (HREE) and are characterised by high La/Lu ratios and negative Eu anomalies. The chondrite-normalised patterns for these granulite-grade rocks are similar to that of the average post-Archaean upper crust, but they are slightly enriched with La and Ce. The REE contents of the <63-μm fraction of the stream sediments are similar to the probable source rocks, but the other grain size fractions show more enriched patterns. The <63-μm stream sediments fraction contains lower total REE, more pronouncd negative Eu anomalies, higher EuN/SmN and lower La N/LuN ratios relative to other fractions. The lower La N/LuN ratio is related to the depletion of heavy minerals in the <63-μm fraction. The 63–125-μm and 125–177-μm grain size fractions of sediments are particularly enriched in LREE (average ΣLREE=2990 μg/g and 3410 μg/g, respectively). The total HREE contents are surprisingly uniform in all size fractions. However, the REE contents in the Walawe Ganga sediments are not comparable with those of the granulite-grade rocks from the source region of the sediments. The enrichment of REE is accounted for by the presence of REE containing accessory mineral phases such as zircon, monazite, apatite and garnet. These minerals are derived from an unknown source, presumably from scattered bodies of granitic pegmatites.  相似文献   

13.
Two cores of sediments, named NR and EB, were collected in the Simbock Lake (Mefou watershed, Yaoundé) to assess their provenance and the degree of heavy metal pollution based on mineralogical and geochemical data. The sediments are sandy, sand-clayey to clayey, and yellowish brown to greenish brown, and with high amounts of organic matter (average value of TOC is 1.95%). The sediments are mainly composed of quartz, kaolinite, accessory goethite, smectite, rutile, feldspars, illite, gibbsite, and interstratified illite-vermiculite. Fourier transform infrared (FT-IR) spectroscopy shows that kaolinite is less crystallized in the NR core than in the EB core. The Index of Compositional Variability (ICV), Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA), and the Rb/Sr and K2O/Rb ratios indicate a high weathering intensity in the source area. These sediments have low contents in Al2O3, Fe2O3, Na2O, K2O, MgO, and CaO as well as high values in SiO2, P2O5, TiO2, and MnO relative to the upper continental crust. The concentrations of Cr, V, Ba, and Zr are higher in the NR core than those in EB. The total rare earth element (REE) content varies between 78 and 405 ppm. The light REE are abundant (LREE/HREE ~?18–59; avg.?=?25.61). The chondrite-normalized REE patterns exhibit (i) negative Eu anomaly (Eu/Eu* ~?0.38–0.62; avg.?=?0.5), (ii) slight positive Ce anomaly (Ce/Ce* ~?1.11–1.34; avg.?=?1.11), and (iii) high REE fractionation ((La/Yb)N ~?12.3–51.75; avg.?=?25.61). The enrichment factor (EF) shows that the Mefou watershed through the Simbock Lake sediments is slightly polluted by the agricultural and urban activities.  相似文献   

14.
通过实验研究,论证了花岗岩风化壳中存在有机质,含有丰富的一元脂肪酸和二元脂肪酸,腐殖酸及多糖化合物。REE能以RE(H2O)配位离子从原岩溶出,一些有机介质和无机介质有助于REE从原岩溶出、迁移,其中以脂肪酸溶出量最高。溶出过程配位反应与水解反应同时出现,溶出和在风化壳中保留同时进行,反应受pH控制。风化壳中REE存在有机结合形态,可能与长链酸或腐殖酸关系比较密切。活性态REE除了与粘土矿物关系密切外,可能与多羟基化合物或多糖有关。  相似文献   

15.
REE geochemical studies of surficial sediment samples from the Yellow Sea of China have shown:(1)The average content of RE2O3 in the Yellow Sea sediments is 175 ppm,close to that in the East China Sea sediments.The REE distribution patterns in the Yellow Sea sediments are also similar to anomalies.These REE characteristics are typical of the continental crust.(2)The contents of REE are controlled mainly by the sediment grain size,i.e.,REE contents increase gradually with decreasing sediment grain size.REE are present mainly in clay minerals.In addition,REE contents are controlled obviously by heavy minerals.REE abundances in heavy minerals are much greater than those in light minerals.(3)Correlation analysis shows that REE have a close relationship with siderophile elements,especially Ti,which has the largest correlation coefficient relative to REE.Terrigenous clastic materials subjected to weathering and transport are suggested to be the main source of REE in the Yellow Sea sediments.  相似文献   

16.
Iron mobilisation from aquifer rocks in an important fractured aquifer system in South Africa is resulting in clogging of boreholes by Fe oxide minerals. Leach experiments using natural waters were conducted to determine the effects of redox conditions, pH lithology and presence of organic acids on the rate and extent of Fe dissolution from aquifer rocks, with the aim of clarifying the association of Fe clogging with geological formations that show Fe staining on weathering. The results indicate that the greatest amount of Fe (>30 mmol/kg rock) is leached from arenaceous rocks with low total Fe contents (49.0–75.0 mmol/kg) under anoxic conditions. Rocks with the highest Fe contents (>800 mmol/kg) generated low concentrations of Fe (<10 mmol/kg) even under favourable conditions of 0 mg/L DO and pH 3. The extent of Fe dissolution from the rocks was found to be most strongly dependent on the redox conditions, and the form of Fe present in the rock, with ascorbate-extracted amorphous Fe being the most mobile. The rate of dissolution is affected by pH and the presence of natural organic acids in the leachate. However, the effect of organic acids was only noticeable on arenaceous rocks.  相似文献   

17.
Robert Cullers 《Lithos》1988,21(4):301-314
A series of soil and stream sediments developed during intense weathering on the metaluminous Danburg granite, northeastern Georgia, U.S.A., have been analyzed mineralogically and chemically. The concentrations of Ba, Na, Rb and Cs in the silt and coarser fractions are controlled mainly by feldspars and biotite. Hf is controlled by zircon, and the REE (rare-earth elements) and Th are largely controlled by sphene. Variations in feldspar, sphene and zircon may produce small variations in Eu/Sm and La/Lu ratios. Ferromagnesian minerals control Ta, Fe, Co, Sc and Cr concentrations.

The mineralogical and chemical composition of the Danburg granite is more closely reflected in the silt than in the sand or gravel fractions of stream sediments. In the silt, the contents of Rb, REE, Th, Ta, Fe, Co and Sc and the ratios of La/Sc, Th/Sc, La/Co, Th/Co, Eu/Sm and La/Lu are similar to those in the unweathered granite. In contrast, these element contents or ratios in the sands and gravels are 0.05−3× the concentration in the unweathered granite. Ta and Ba contents are an exception to the above. The Ta and Ba contents of the sands and gravels are similar to those of the granite.

In the kaolinite-halloysite clays, the content of Na is depleted relative to the source. Rb, Cs, Ba, Hf and Ta are depleted or enriched in the clays relative to the source, while the REE, Th, Fe, Co, Sc and Cr are enriched. The Eu/Sm (Eu anomaly size) and La/Lu ratios, and the REE patterns of the clays are similar to those of the source.

Thus, the mineralogy and element contents of a siltstone developed from metaluminous, granitic sources during intense weathering would be expected to be more similar to the source rock than the sandstones and conglomerates. Claystones should contain similar REE patterns and Eu/Sm ratios as the source rock, but such fine-grained sediments might represent much larger areas of source rocks than the more locally derived sandstones or conglomerates.  相似文献   


18.
Peridotite and granite xenoliths, in the early stage of weathering, occur in the Nyos volcanic region (NW Cameroon). Geochemical data shows that peridotites are marked by high concentrations of MgO (42.30 wt.%, with SiO2/MgO ∼ 1), chromium (2100 ppm), nickel (2100 ppm) and cobalt (104 ppm), as well as by low lanthanide contents (ΣREE: 7.41 ppm). Granites display SiO2 contents (70–73 wt.%), and are mostly peraluminous (1.40 > A/CNK < 1.6). They are also characterized by low contents in chromium (<24 ppm), nickel (ranging from 6 to 15 ppm) and cobalt (ranging from 3 to 6 ppm). Granites possess high lanthanide contents (ΣREE varying between 248.00 and 463.00 ppm), particularly in light lanthanides (LREE/HREE ratios ranging from 21 to 32). The chondrite-normalized patterns of the studied xenoliths are characterized by: (i) LREE enrichments in both rock types; (ii) negative Eu anomalies ([Eu/Eu*] ranging from 0.45 to 0.64) and weak positive Ce anomalies ([Ce/Ce*] ranging from 1.06 to 1.46) in granites. The weathering process provokes a remobilization of several trace elements notably light lanthanides.The geochemical survey of Platinum-Group Elements (PGE) done in these rocks in the early stage of weathering shows that PGE contents are less than 7 ppb in the peridotites. The highly concentrated elements are ruthenium (6.26 ppb) and platinum (5.53 ppb). The total PGE content is 14.57 ppb. These concentrations normalized with respect to chondrites display a flat spectrum from iridium to platinum. PGE contents in the granites are below detection limit except for two samples (LNY01 and LNY02) whose platinum content is close to 0.23 ppb.  相似文献   

19.
This paper presents abundances of major and trace elements of apatites in granitic rocks associated with different types of ore deposits in Central Kazakhstan on the basis of electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the concentrations and ratios of elements in apatites from different granitoid rocks show distinct features, and are sensitive to magma evolution, petrogenetic and metallogenetic processes. Apatites in the rocks associated with Mo‐W deposits have high content of F and MnO, low content of Cl, which may be indicative of sedimentary sources, while apatites from a Pb‐Zn deposit show relatively high content of Cl and low F content, which possibly suggest a high water content. In these apatites, Sr contents decrease, while Mn and Y contents increase with magma evolution. This relationship reflects that these elements in apatites are related with the degree of magmatic differentiation. Four types of REE patterns in apatites are identified. Type 1 character of highest (La/Yb)N in apatites of Aktogai porphyry Cu‐Mo deposit, Sayak‐I skarn Cu deposit and Akzhal skarn Pb‐Zn depposit is likely produced by the crystallization of heavy REE‐enriched minerals. Type 2 character of upward‐convex light REE in apatite of Aktogai porphyries likely results from La‐enriched mineral crystallization. Type 3 feature of Nd depletion in apatites of East Kounrad and Zhanet deposits both from Mo‐W deposits primarily inherits the character of host‐rock. Type 4 apatites of Aktogai deposit and Akshatau W‐Mo deposit with wide range of REE contents may suggest that apatites crystallize under a wide temperature range. Three types of apatite with distinct redox states are identified based on Eu anomaly. The Aktogai apatite with slight negative Eu anomaly displays the most oxidized state of the magma, and the apatites of other samples at Aktogai, East Kounrad and Akzhal with moderate negative Eu anomaly show moderate oxidizing condition of these rocks, while the remaining apatites with strong En anomaly indicate a moderate reductive state of these rocks.  相似文献   

20.
The REE (rare earth element) content of a wide variety of clay mineral groups have been analyzed using radiochemical neutron activation and have been found to be quite variable in absolute REE content (range of ∑REE = 5.4–1732) and less variable in relative REE content (range of chondritenormalized La/Lu = 0.9–16.5). The variable REE content of the clay mineral groups is probably determined by the REE content of the source rock from which the clay mineral was derived and not from the separate minerals in the rock.The clay-sized fractions of the Havensville and Eskridge shales of Kansas and Oklahoma have similar relative REE distributions and identical negative Eu anomaly size as the composite of NAS (N. American shales), but an absolute REE content (range of ∑REE = 46–348) that may differ significantly from the composite of NAS. The clay-sized fraction of samples from any given outcrop did not vary much in absolute or relative REE content, but samples from northern Oklahoma, probably composed of continental to near-shore marine sediments, have higher absolute REE contents and higher La/Lu ratios than samples of marine deposits in Kansas (e.g. mean ∑REE in Oklahoma = 248; mean ∑REE in Kansas = 69–116). The differencess in the REE content between samples in Oklahoma and Kansas may be caused by chemical weathering processes in the source area, exchange reactions in the environment of deposition, or diagenesis and do not appear to be a result of the different clay minerals.Most samples have Eu anomalies relative to chondrites (range of Eu/Sm ratios of samples = 0.035–1.17; chondrites = 0.35). Some montmorillonites and kaolinites are anomalous in Eu relative to the NAS (range of Eu/Sm ratios of samples = 0.056–0.21; NAS = 0.22). These anomalies may be inherited from source rocks with Eu anomalies originally produced by igneous processes, or they may be produced by chemical weathering processes in the source area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号