首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

2.
Recent accelerator data based parameterization of the inclusive cross section (cs) forπ0 production in hadronic collisions and an explicit incorporation of the finiteness of the relevant projectile hadron spectrum suggest a significant steepening in the spectrum (by as much as 0.4 in the spectral index) of the secondaryγ-ray towards the end of the spectrum. We emphasize here that this spectral steepening in conjunction with the possibility that in the bright X-ray binaries the maximum energy to which theγ-ray producing progenitor protons may be accelerated is only ∼ l0 PeV, may imply an effective efficiency forγ-ray production,ε, as reckoned by the PeV arrays, one or two orders smaller than the previous estimates. To explain the genesis of a given PeV photon flux from an X-ray binary, one, therefore, has to. accordingly consider a much higher value of the progenitor proton beam luminosity,L p . This requirement may raise further questions regarding the actual genesis of PeVγ-rays in X-ray binaries, or alternatively, on the veracity of the high values of the PeV photon fluxes reported by earlier experiments.  相似文献   

3.
It is suggested that the outflowing plasma in the jets of active galactic nuclei (AGNs) is inhomogeneous and consists of separate clouds. These clouds are strongly magnetized and move away from the central engine at relativistic speeds. The clouds interact with an ambient medium which is assumed to be at rest. In the process of this interaction, particles of the ambient medium are accelerated to high energies at the cloud front and flow ahead of the front. It is shown that the radiation of the accelerated particles may be responsible for the X-ray and γ-ray emission from AGN jets. TeV γ-ray emission is generated in the inner parts of AGN jets where the Lorentz factor of the cloud fronts is Γ0≥ 30, while GeV γ-ray emission emanates from the outer parts of AGN jets where Γ0 is ∼ 10. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Share  G.H.  Murphy  R.J.  Tylka  A.J.  Schwartz  R.A.  Yoshimori  M.  Suga  K.  Nakayama  S.  Takeda  H. 《Solar physics》2001,204(1-2):41-53
The HXS and GRS detectors on Yohkoh observed the 14 July 2000, X5.7 flare, beginning at ∼ 10:20 UT, ∼ 4 min before the peak in soft X-rays. The hard X-rays and γ-rays peaked ∼ 3 min later at ∼ 10:27 UT. Solar γ-ray emission lasted until ∼ 10:40 UT. Impact of high-energy ions at the Sun is revealed by the γ-ray lines from neutron capture, annihilation radiation and de-excitation that are visible above the bremsstrahlung continuum. From measurement of these lines we find that the flare-averaged spectrum of accelerated protons is consistent with a power law ge10 MeV with index 3.14±0.15 and flux 1.1×1032 protons MeV−1 at 10 MeV. We estimate that there were ∼1.5×1030 erg in accelerated ions if the power law extended without a break down to 1 MeV; this is about 1% of the energy in electrons > 20 keV from measurements of the hard X-rays. We find no evidence for spectral hardening in the hard X-rays that has been suggested as a predictor for the occurrence of solar energetic particle (SEP) events. This was the third largest proton event above 10 MeV since 1976. The GRS and HXS also observed γ-ray lines and continuum produced by the impact of SEP on the Earth's atmosphere beginning about 13 UT on 14 July. These measurements show that the SEP spectrum softened considerably over the next 24 hours. We compare these measurements with proton measurements in space.  相似文献   

5.
We discuss the implications of the recent X-ray and TeV γ-ray observations of the PSR B1259–63 system (a young rotation powered pulsar orbiting a Be star) for the theoretical models of interaction of pulsar and stellar winds. We show that previously considered models have problems to account for the observed behaviour of the system. We develop a model in which the broad band emission from the binary system is produced in result of collisions of GeV–TeV energy protons accelerated by the pulsar wind and interacting with the stellar disk. In this model the high energy γ-rays are produced in the decays of secondary neutral pions, while radio and X-ray emission are synchrotron and inverse Compton emission produced by low-energy (≤100 MeV) electrons from the decays of secondary charged π ± mesons. This model can explain not only the observed energy spectra, but also the correlations between TeV, X-ray and radio emission components.   相似文献   

6.
We have studied the correlations between the near-IR and the γ-ray bands using 29 observed γ-ray-loud blazars (16 BL Lac objects and 13flat-spectrum radio quasars (FSRQs)) with near-IR and γ-ray spectralindices and fluxes. The results show that there are very strong correlations between near-IR mean spectral index αIR and γ-ray mean spectral index αγ and between near-IR and γ-ray fluxes. Which means that γ-ray radiation from the blazars should be mainly produced by the synchrotron self-Compton process. In addition, the γ-ray emission of BL Lac objects may be somewhat different from flat-spectrum radio quasars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We present the Wide-field Infrared Survey Explorer (WISE) photometric data of 158 Fermi-detected BL Lacs and investigate the nature of their mid-infrared (MIR) continuum emission. In the [3.4]-[4.6]-[12] μm color–color diagram, nearly all their colors lie within the WISE Blazar strip (WBS), which is an effective diagnostic tool to separate sources dominated by non-thermal radiation from those dominated by thermal radiation. This feature indicates that their MIR emission is predominantly non-thermal. This argument is further supported by the strong radio-MIR flux correlation. We derive their MIR spectral indices and compare them with the near-infrared (NIR) spectral indices. We find that there is a prevalent steepening from MIR spectrum to NIR spectrum. The low-frequency-peaked BL Lacs (LBLs) have on average a larger MIR spectral index and a higher MIR luminosity than the high-frequency-peaked BL Lacs (HBLs), and the intermediate-frequency-peaked BL Lacs (IBLs) appear to bridge them. The MIR-γ-ray flux correlation is highly significant. A strong positive correlation is also found between the MIR and γ-ray spectral indices. The γ-ray-MIR loudness is significantly correlated with the synchrotron peak frequency. Finally we propose that the γ-rays are highly associated with the MIR emission from the jet, and the γ-ray emission is likely from the synchrotron self-Compton process for the Fermi-detected BL Lacs in our sample.  相似文献   

8.
Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data.  相似文献   

9.
We apply an inverse Compton   e ±  pair cascade model for γ-ray production in the massive binary system LSI +61° 303 assuming that electrons are accelerated already inside the inner part of the jet launched by the compact object. γ-ray spectra, affected by the cascade process, and lower energy spectra, from the synchrotron cooling of the highest energy electrons in the jet, are calculated as a function of the phase of this binary system. γ-ray spectra expected in such a model have different shape than those ones produced by electrons in the jet directly to observer. Moreover, the model predicts clear anticorrelation between γ-ray fluxes in the GeV (1–10 GeV) and TeV (>200 GeV) energy ranges with the peak of the TeV emission at the phase ∼0.5 (the peak half-width ranges between the phases ∼0.4–0.9, for the inclination of the binary system equal to 60°, and ∼0.4–0.1 for 30°). The fine features of TeV γ-ray emission (fluxes and spectral shapes) as a function of the phase of the binary system are consistent with recent observations reported by the MAGIC collaboration. Future simultaneous observations in the GeV energies (by the GLAST and AGILE telescopes) and in the TeV energies (by the MAGIC and VERITAS telescopes) should test other predictions of the considered model supporting or disproving the hypothesis of acceleration of electrons already in the inner part of the microquasar jets.  相似文献   

10.
We calculate the spectral energy distribution (SED) of electromagnetic radiation and the spectrum of high-energy neutrinos from BL Lac objects in the context of the synchrotron proton blazar model. In this model, the high-energy hump of the SED is due to accelerated protons, while most of the low-energy hump is due to synchrotron radiation by co-accelerated electrons. To accelerate protons to sufficiently high energies to produce the high-energy hump, rather high magnetic fields are required. Assuming reasonable emission region volumes and Doppler factors, we then find that in low-frequency peaked BL Lacs (LBLs), which have higher luminosities than high-frequency peaked BL Lacs (HBLs), there is a significant contribution to the high-frequency hump of the SED from pion photoproduction and subsequent cascading, including synchrotron radiation by muons. In contrast, in HBLs we find that the high-frequency hump of the SED is dominated by proton synchrotron radiation. We are able to model the SED of typical LBLs and HBLs, and to model the famous 1997 flare of Markarian 501. We also calculate the expected neutrino output of typical BL Lac objects, and estimate the diffuse neutrino intensity due to all BL Lacs. Because pion photoproduction is inefficient in HBLs, as protons lose energy predominantly by synchrotron radiation, the contribution of LBLs dominates the diffuse neutrino intensity. We suggest that nearby LBLs may well be observable with future high-sensitivity TeV γ-ray telescopes.  相似文献   

11.
The extragalactic analogs of the microquasars, the quasars, are strong γ-ray emitters at GeV energies. It is expected that microquasars are also γ-ray sources, because of the analogy with quasars and because theoretical models predict the high-energy emission. There are two microquasars that appear as the possible counterparts for two unidentified high-energy γ-ray sources.  相似文献   

12.
We have considered secondaries produced by accelerated particles trapped in a coronal magnetic structure as well as by those precipitating down into dense regions of the solar atmosphere. We have calculated time profiles and generation anisotropy for 0-decay -radiation, nuclear -ray lines and >10 MeV electron bremsstrahlung in a flare magnetic arch. We have shown that as primary particles move inside a magnetic arch in an inhomogeneous atmosphere the secondary emission turns out to be anisotropical, even if the acceleration process is an isotropical one. On the other hand, the anisotropy of the acceleration process not only influences the directivity of secondary emission but also its intensity decay rate. The exact as well as simple approximate calculation techniques for the angular and temporal characteristics of -ray emission are discussed. These techniques may be applied to considering the generation process of another kind of secondary product in flare loops.  相似文献   

13.
A Total Solar Eclipse (TSE) was observed from Diamond Harbour (lat. 22.2°N, long 88.2°E) on 24 October 1995. The variation of -ray intensity was measured in the energy range of 0.3–3.0 MeV for different time spans throughout the period of the eclipse. A CR-39 detector was used to look at the change in the fluxes of neutral and charged particles. The maximum drop ( 25%) in the intensity of -ray was observed in the range 2.5–3 MeV during TSE. The CR-39 results showed the appearance of a good number of tracks and a small variation of proton and neutron flux of 10% which was not significant statistically. Low energy -ray fluxes at sea level originate from the secondary electron-photon components of cosmic rays in the atmosphere; its modulation by TSE is interpreted as follows. The cooling of the atmosphere in the path of the umbra induces a reduction of the height of the main production layer of the nuclear component, as a result of which, fewer µ± mesons (from the decay of the± mesons) decay to e±. This leads to a small reduction in the flux of electron-photon component at sea level which originates from this branch; the main branch of e - component from 0 decay remains nearly unaffected. As the total mass of air remains the same, little or no change in the slow proton or the neutron flux at sea level is expected. These are consistent with the present observations. For a better understanding, further studies of this new phenomenon during future TSE are suggested.  相似文献   

14.
Usually the gyrosynchrotron emission of microwave bursts from electron populations with a power-law (PL) energy distribution has been considered under the assumption that the spectral index of the distribution is constant over a wide range of energies. Meanwhile, there is strong evidence, in particular from hard X-ray and -ray, but also from cm/mm wavelength radio observations, that in many solar flare events the spectrum of the emitting electrons is characterized by a significant hardening at energies above 100–500 keV. We present some examples of calculated microwave burst spectra at cm/mm wavelengths taking into account the above evidence. It is shown that a break in the energy spectrum of the PL electrons can indeed result in a spectral hardening sometimes observed in microwave bursts at frequencies above 10–30 GHz.  相似文献   

15.
The cosmic -ray spectrum below 1 GeV arising from cosmic ray p-p interactions is calculated. Its characteristics are determined by the properties of secondary neutral pion production occurring at accelerator energies. A model is chosen for numerical calculations in which the two dominant modes of neutral pion production at accelerator energies are the production of the (1.238) isobar and one fireball. The effect of -p and p- interactions on the cosmic -ray spectrum is also calculated. The final results are given in terms of both differential and integral -ray energy spectra.  相似文献   

16.
Analysis of the anisotropy of the -ray background observed by Clarket al. (1968) has lead to the suggestion that part of the anisotropy be due to a source at the Galactic Centre. The complex structure of radio and infrared emission of the region of Sgr A is considered. The -ray flux arising from Compton scattering and 0 decay is calculated. For a value of the magnetic field H10–4 Gauss, corresponding to equipartition, the -ray flux above 100 MeV at Earth from the Sgr A source is expected to lie between 10–6 and 10–5 gamma/cm2 sec. Such a source should be detectable in the near future.  相似文献   

17.
Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to investigate the properties of Kepler’s SNR and, in particular, to predict the γ-eay spectrum expected from this SNR. Observations of the nonthermal radio and X-ray emission spectra as well as theoretical constraints for the total supernova (SN) explosion energy E sn are used to constrain the astronomical and particle acceleration parameters of the system. Under the assumption that Kepler’s SN is a type Ia SN we determine for any given explosion energy E sn and source distance d the mass density of the ambient interstellar medium (ISM) from a fit to the observed SNR size and expansion speed. This makes it possible to make predictions for the expected γ-eay flux. Exploring the expected distance range we find that for a typical explosion energy E sn=1051 erg the expected energy flux of TeV γ-rays varies from 2×10−11 to 10−13 erg/(cm2 s) when the distance changes from d=3.4 kpc to 7 kpc. In all cases the γ-eay emission is dominated by π 0-decay γ-rays due to nuclear CRs. Therefore Kepler’s SNR represents a very promising target for instruments like H.E.S.S., CANGAROO and GLAST. A non-detection of γ-rays would mean that the actual source distance is larger than 7 kpc.  相似文献   

18.
We fit the spectra of Cyg X-1 using two component advective flows with Keplerian accretion disks on the equatorial plane surrounded by sub-Keplerian disks when standing shocks are present. The soft photons generated by the bremsstrahlung and synchrotron processes in the sub-Keplerian flow, as well as the multi-colour black body emission from the Keplerian disk are Comptonized by the thermal and non-thermal electrons. By varying Keplerian and sub-Keplerian rates we are able to reproduce the observed soft and hard states as far as X-ray region is concerned and ‘low γ-ray intensity’ and ‘high γ-ray intensity’ states as far as the soft γ-ray region is concerned. We also find two pivotal points where the spectra intersect as is observed in Cyg X-1.   相似文献   

19.
Supernova remnants accelerate particles up to energies of at least 100 TeV as established by observations in very-high-energy γ-ray astronomy. Molecular clouds in their vicinity provide an increased amount of target material for proton-proton interaction and subsequent neutral pion decay into γ-rays of accelerated hadrons escaping the remnant. Therefore, these molecular clouds are potential γ-ray sources. The γ-ray emission from these clouds provides a unique environment to derive information on the propagation of very-high-energy particles through the interstellar medium as well as on the acceleration of hadrons in supernova remnants. Current Imaging Atmospheric Cherenkov Telescope systems are suitable to explore a large parameter space of the propagation properties depending on the age of the supernova remnant and the distance between the remnant and the nearby molecular cloud.In this paper we present our strategy and results of a systematic search for γ-ray emitting molecular clouds near supernova remnants which are potentially detectable with current experiments in the TeV energy range and explore the prospects of future experiments.  相似文献   

20.
《Experimental Astronomy》2009,23(1):91-120
The primary scientific goal of the GRIPS mission is to revolutionize our understanding of the early universe using γ-ray bursts. We propose a new generation gamma-ray observatory capable of unprecedented spectroscopy over a wide range of γ-ray energies (200 keV–50 MeV) and of polarimetry (200–1000 keV). The γ-ray sensitivity to nuclear absorption features enables the measurement of column densities as high as 1028cm − 2. Secondary goals achievable by this mission include direct measurements of all types of supernova interiors through γ-rays from radioactive decays, nuclear astrophysics with massive stars and novae, and studies of particle acceleration near compact stars, interstellar shocks, and clusters of galaxies. See for the authors’ affiliations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号