首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A new tree-ring reconstruction of the Palmer Drought Severity Index (PDSI) for Mesoamerica from AD 771 to 2008 identifies megadroughts more severe and sustained than any witnessed during the twentieth century. Correlation analyses indicate strong forcing of instrumental and reconstructed June PDSI over Mesoamerica from the El Ni?o/Southern Oscillation (ENSO). Spectral analyses of the 1,238-year reconstruction indicate significant concentrations of variance at ENSO, sub-decadal, bi-decadal, and multidecadal timescales. Instrumental and model-based analyses indicate that the Atlantic Multidecadal Oscillation is important to warm season climate variability over Mexico. Ocean-atmospheric variability in the Atlantic is not strongly correlated with the June PDSI reconstruction during the instrumental era, but may be responsible for the strong multidecadal variance detected in the reconstruction episodically over the past millennium. June drought indices in Mesoamerica are negatively correlated with gridded June PDSI over the United States from 1950 to 2005, based on both instrumental and reconstructed data. Interannual variability in this latitudinal moisture gradient is due in part to ENSO forcing, where warm events favor wet June PDSI conditions over the southern US and northern Mexico, but dryness over central and southern Mexico (Mesoamerica). Strong anti-phasing between multidecadal regimes of tree-ring reconstructed June PDSI over Mesoamerica and reconstructed summer (JJA) PDSI over the Southwest has also been detected episodically over the past millennium, including the 1950–1960s when La Ni?a and warm Atlantic SSTs prevailed, and the 1980–1990s when El Ni?o and cold Atlantic SSTs prevailed. Several Mesoamerican megadroughts are reconstructed when wetness prevailed over the Southwest, including the early tenth century Terminal Classic Drought, implicating El Ni?o and Atlantic SSTs in this intense and widespread drought that may have contributed to social changes in ancient Mexico.  相似文献   

2.
We present here the first statistically calibrated and verified tree-ring reconstruction of climate from continental Southeast Asia. The reconstructed variable is March–May (MAM) Palmer Drought Severity Index (PDSI) based on ring widths from 22 trees (42 radial cores) of rare and long-lived conifer, Fokienia hodginsii (Po Mu as locally called) from northern Vietnam. This is the first published tree ring chronology from Vietnam as well as the first for this species. Spanning 535 years, this is the longest cross-dated tree-ring series yet produced from continental Southeast Asia. Response analysis revealed that the annual growth of Fokienia at this site was mostly governed by soil moisture in the pre-monsoon season. The reconstruction passed the calibration-verification tests commonly used in dendroclimatology, and revealed two prominent periods of drought in the mid-eighteenth and late-nineteenth centuries. The former lasted nearly 30 years and was concurrent with a similar drought over northwestern Thailand inferred from teak rings, suggesting a “mega-drought” extending across Indochina in the eighteenth century. Both of our reconstructed droughts are consistent with the periods of warm sea surface temperature (SST) anomalies in the tropical Pacific. Spatial correlation analyses with global SST indicated that ENSO-like anomalies might play a role in modulating droughts over the region, with El Niño (warm) phases resulting in reduced rainfall. However, significant correlation was also seen with SST over the Indian Ocean and the north Pacific, suggesting that ENSO is not the only factor affecting the climate of the area. Spectral analyses revealed significant peaks in the range of 53.9–78.8 years as well as in the ENSO-variability range of 2.0 to 3.2 years.  相似文献   

3.
Development of long tree-ring records is an important task in paleoclimate studies. Here we presented a five-century long reconstruction of summer (June to August) temperature based on a tree ring-width chronology of Picea brachytyla var. complanata originating from the Hengduan Mountains of China. Climate-growth response analysis showed that summer temperature was the main climatic factor limiting tree-ring growth in the study area. The reconstructed summer temperature accounted for 47.6% of the variance in actual temperature during their common period A.D. 1958–2002. Analysis of the temperature reconstruction showed that major warm periods occurred in the A.D. 1710s–1750s, 1850s, 1920s–1950s and 1990s to present, whereas cold intervals occurred in the A.D. 1630s–1680s, 1790s–1800s, 1860s–1880s and 1950s–1980s, respectively. The low-frequency variation of the reconstruction agreed fairly well with tree-ring reconstructed temperature from nearby regions and with records of glacier fluctuations in the surrounding high mountains, suggesting that our reconstructed summer temperature was reliable, and could aid in the evaluation of regional climate variability.  相似文献   

4.
Tree-ring reconstructed rainfall variability in Zimbabwe   总被引:1,自引:1,他引:1  
We present the first tree-ring reconstruction of rainfall in tropical Africa using a 200-year regional chronology based on samples of Pterocarpus angolensis from Zimbabwe. The regional chronology is significantly correlated with summer rainfall (November–February) from 1901 to 1948, and the derived reconstruction explains 46% of the instrumental rainfall variance during this period. The reconstruction is well correlated with indices of the El Niño-southern oscillation (ENSO), and national maize yields. An aridity trend in instrumental rainfall beginning in about 1960 is partially reproduced in the reconstruction, and similar trends are evident in the nineteenth century. A decadal-scale drought reconstructed from 1882 to 1896 matches the most severe sustained drought during the instrumental period (1989–1995), and is confirmed in part by documentary evidence. An even more severe drought is indicated from 1859 to 1868 in both the tree-ring and documentary data, but its true magnitude is uncertain. A 6-year wet period at the turn of the nineteenth century (1897–1902) exceeds any wet episode during the instrumental era. The reconstruction exhibits spectral power at ENSO, decadal and multi-decadal frequencies. Composite analysis of global sea surface temperature during unusually wet and dry years also suggests a linkage between reconstructed rainfall and ENSO.  相似文献   

5.
We developed ring-width chronologies of Cedrus deodara [(Roxb.) G. Don] and Pinus gerardiana (Wall. Ex. Lamb) from a homogeneous moisture stressed area in Kinnaur, Himachal Pradesh. Running correlation using a 50-year window with overlap of 25 years showed strong correlations between these species chronologies during the entire common period (ad 1310–2005). Response function analysis indicated that except for January–February, precipitation has a direct relationship with growth of these species. We therefore combined both the species chronologies to develop a statistically calibrated reconstruction of March–July precipitation that spans from ad 1310–2004, and explains 46% of the variance contained in the instrumental data from the calibration period 1951–1994. In the past 694 years of the reconstruction, the wettest period was in the twentieth century (1963–1992) and the driest in the eighteenth century (1773–1802). The relationships observed between reconstructed precipitation and Indian summer monsoon on interdecadal scale, SOI, PDO and NAO indicate the potential utility of such long-term reconstructions in understanding the large-scale climate variability. Multi-taper method (MTM) spectral analysis indicated significant (p < 0.05) spectral peaks at 2–4, 6, 8, 10, 30, 33, 37 and 40–42 years in the reconstructed precipitation data.  相似文献   

6.
We describe an improved tree-ring reconstruction of mean warm-season (November–April) temperatures for Tasmania from Huon pine. This record extends back to 1600 BC and is based on a tree-ring chronology that was processed to retain as much low-frequency variance as possible. The resulting reconstruction explains 46.6% of the variance and verifies significantly when compared to withheld instrumental data. Cross-spectral analysis of actual and estimated temperatures over the 1886–1991 common period indicates that most of the unexplained variance is at periods < 12 years in length. At periods > 12 years, the squared coherency ranges between 0.6–0.8, and the cross-spectral gain indicates that the amplitude of the reconstruction is a nearly unbiased estimate of the true temperature amplitude. Therefore, this reconstruction should be especially useful for studying multi-decadal temperature variability in the Tasmanian sector of the Southern Hemisphere over the past 3592 years. To this end, we examined the time evolution of low-frequency temperature amplitude fluctuations and found evidence for a 35% amplitude reduction after AD 100 that persisted until about AD 1900. Since that time, the low-frequency temperature amplitude has systematically increased. We also show how this reconstruction is related to large-scale sea surface temperatures (SST) in the Indian Ocean and eastward to the dateline. Pointwise correlations between the Tasmanian record and SSTs reveal a relationship that extends across the southern Indian Ocean and towards the Arabian Sea. This pattern is largely determined by inter-decadal temperature variability, with correlations in this > 10-year bandwidth commonly exceeding 0.6 over most of the southern Indian and southwestern Pacific sectors. A rotated empirical orthogonal function analysis reveals that the pattern of pointwise correlations found between the temperature reconstruction and SSTs is largely explained by the linear combination of three orthogonal modes of SST variability. Received: 12 January 1999 / Accepted: 31 July 1999  相似文献   

7.
An annually resolved and absolutely dated ring-width chronology spanning 657 yrs. is constructed with Whitebark pine (Pinus bungeana Zucc.) samples from the southern Taihang Mountains, Eastern China. On the basis of a significant correlation between the tree-ring width index and observed instrumental data, precipitation in current May is reconstructed for the region since AD 1510, with predictor variables accounting for 37.9 % of the variance in precipitation data. In agreement with other drought reconstructions, notable dry spells occur in the 1630s–1650s, 1680s–1700s, and 1770s–1800s, whereas wet periods prevail in the 1530s–1570s, 1840s–1870s, and 1950s-present. Wavelet analysis reveals clear 2–8, 20–40, and 80–130 yrs cycles at the 95 % confidence level for the reconstructed series over the past 500 yrs, suggesting possible linkages with the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Correlation analysis between the tree-ring series, ENSO, and PDO index further demonstrates that precipitation is negatively correlated with PDO and ENSO in the long term.  相似文献   

8.
Tendencies of climatic variability indicate that northern Mexico will soon suffer from severe drought. Modeling the influence of climate and ecological processes would help researchers better understand the future implication of climatic variations. Here, we reconstructed historical seasonal precipitation using dendrochronological indices of Pinus cooperi and El Niño southern oscillation (ENSO). Correlation analysis was conducted to establish the precipitation response period; then a reconstruction model using independent variables was constructed using regression procedures. Available data were calibrated and verified to strengthen and validate the modeled reconstruction. Precipitation from the previous winter was best correlated with tree growth. Regression procedures showed that the residual chronology associated in a linear model with El Niño 3.4 explained 47 % of seasonal precipitation variability. This study contributes to a better understanding of historical variations in precipitation and the influence of ENSO in common tree species of northern Mexico to help land managers improve local forest management in a climate change scenario.  相似文献   

9.
Winter-spring cold extreme is a kind of serious natural disaster for southeastern China. As such events are recorded in discrete documents, long and continuous records are required to understand their characteristics and driving forces. Here we report a regional-scale winter-spring (January–April) temperature reconstruction based on a tree-ring network of pine trees (Pinus massoniana) from five sampling sites over a large spatial scale (25–29°N, 111–115°E) in southeastern China. The regional tree-ring chronology explains 48.6% of the instrumental temperature variance during the period 1957–2008. The reconstruction shows six relatively warm intervals (i.e., ~1849–1855, ~1871–1888, ~1909–1920, ~1939–1944, ~1958–1968, 1997–2007) and five cold intervals (i.e., ~1860–1870, ~1893–1908, ~1925–1934, ~1945–1957, ~1982–1996) during 1849–2008. The last decade and the 1930s were the warmest and coldest decades, respectively, in the past 160 years. The composite analysis of 500-hPa geopotential height fields reveals that distinctly different circulation patterns occurred in the instrumental and pre-instrumental periods. The winter-spring cold extremes in southeastern China are associated with Ural-High ridge pattern for the instrumental period (1957–2008), whereas the cold extremes in pre-instrumental period (1871–1956) are associated with North circulation pattern.  相似文献   

10.
A May–July precipitation nested reconstruction for the period AD 1415–2010 was developed from multi-century tree-ring records of Pinus nigra, Pinus brutia, and Cedrus brevifolia for Cyprus. Calibration and verification statistics for the period 1917–2010 show a good level of skill, and split-sample validation over 1917–2010 supports temporal stability of the tree-ring signal for precipitation. Smoothed annual time series of reconstructed precipitation and a tally of drought events in a moving time window indicate that the calibration period is not representative of the full range of drought variability. While convective precipitation in the warm season may be driven strongly by local factors, composite maps of geopotential height anomaly for dry years and wet years support large-scale atmospheric-flow influence related to height anomalies over the broader region of northeast Africa and the eastern Mediterranean. Emerging positive trend in reconstruction residuals may be an early sign of exacerbation of drought stress on trees by recent warming in May–July. Future warming expected from increases in greenhouse gases poses a threat to forest resources in Cyprus and elsewhere in the Mediterranean.  相似文献   

11.
We present an annually resolved reconstruction of spring-summer precipitation variability in East Anglia, UK (52–53°N, 0–2°E) for the period AD 900–2009. A continuous regional network of 723 living (AD 1590–2009) and historical (AD 781–1790) oak (Quercus sp.) ring-width series has been constructed and shown to display significant sensitivity to precipitation variability during the March-July season. The existence of a coherent common growth signal is demonstrated in oaks growing across East Anglia, containing evidence of near-decadal aperiodic variability in precipitation throughout the last millennium. Positive correlations are established between oak growth and precipitation variability across a large region of northwest Europe, although climate-growth relationships appear time transgressive with correlations significantly weakening during the early twentieth century. Examination of the relationship between oak growth, precipitation, and the North Atlantic Oscillation (NAO), reveals no evidence that the NAO plays any significant role in the control of precipitation or tree growth in this region. Using Regional Curve Standardisation to preserve evidence of low-frequency growth variability in the East Anglian oak chronology, we produce a millennial length reconstruction that is capable of explaining 32–35% of annual-to-decadal regional-scale precipitation variance during 1901–2009. The full length reconstruction indicates statistically significant anomalous dry conditions during AD 900–1100 and circa-1800. An apparent prolonged wetter phase is estimated for the twelfth and thirteen centuries, whilst precipitation fluctuates between wetter and drier phases at near centennial timescales throughout the fourteenth to seventeenth centuries. Above average precipitation reconstructed for the twenty-first century is comparable with that reproduced for the 1600s. The main estimated wet and dry phases reconstructed here appear largely coherent with an independent tree-ring reconstruction for southern-central England.  相似文献   

12.
A 1053-year reconstruction of spring rainfall (March-June) was developed for the southeastern United States, based on three tree-ring reconstructions of statewide rainfall from North Carolina, South Carolina, and Georgia. This regional reconstruction is highly correlated with the instrumental record of spring rainfall (r = +0.80; 1887–1982), and accurately reproduces the decade-scale departures in spring rainfall amount and variance witnessed over the Southeast during the past century. No large-magnitude centuries-long trends in spring rainfall amounts were reconstructed over the past 1053 years, but large changes in the interannual variability of spring rainfall were reconstructed during portions of the Medieval Warm Period (MWP), Little Ice Age (LIA), and the 20th century. Dry conditions persisted at the end of the 12th century, but appear to have been exceeded by a reconstructed drought in the mid-18th century. High interannual variability, including five extremely wet years were reconstructed for a 20-yr period during the late 16th and early 17th centuries, and may reflect amplified atmospheric circulation over eastern North America during what appears to have been one of the most widespread cold episodes of the Little Ice Age.  相似文献   

13.
The recent unprecedented warming found in different regions has aroused much attention in the past years. How temperature has really changed on the Tibetan Plateau (TP) remains unknown since very limited high-resolution temperature series can be found over this region, where large areas of snow and ice exist. Herein, we develop two Juniperus tibetica Kom. tree-ring width chronologies from different elevations. We found that the two tree-ring series only share high-frequency variability. Correlation, response function and partial correlation analysis indicate that prior year annual (January–December) minimum temperature is most responsible for the higher belt juniper radial growth, while more or less precipitation signal is contained by the tree-ring width chronology at the lower belt and is thus excluded from further analysis. The tree growth-climate model accounted for 40 % of the total variance in actual temperature during the common period 1957–2010. The detected temperature signal is further robustly verified by other results. Consequently, a six century long annual minimum temperature history was firstly recovered for the Yushu region, central TP. Interestingly, the rapid warming trend during the past five decades is identified as a significant cold phase in the context of the past 600 years. The recovered temperature series reflects low-frequency variability consistent with other temperature reconstructions over the whole TP region. Furthermore, the present recovered temperature series is associated with the Asian monsoon strength on decadal to multidecadal scales over the past 600 years.  相似文献   

14.
In this work we apply the wavelet transform to the Pelotas (southern Brazil) total annual rainfall series (1894–1995). Classical, wavelet and cross-wavelet analyses were performed in the El Niño Southern Oscillation (ENSO), Quasi-Biennial Oscillation (QBO), sunspot number (Rz) and Pelotas rainfall time series. Classical spectral analysis for Pelotas has shown a large number of short periods – between 2.2–5.6 years (yr) and periods at 8.9, 11.7 and 24.9 yr. Further, we have found that the Pelotas rainfall wavelet spectrum shows the most significant periodicities around 2–8 yr, but they have an intermittent character. Cross-wavelet spectrum showed that: rainfall and QBO series are correlated at 2–3 yr (QBO) scales and this cross-power is continuous along the time series interval; rainfall and SOI have higher cross-power around 4–8 yr, but this signal is sporadic; rainfall and sunspot number (Rz) showed higher cross-power around the 11-yr solar cycle period, but this cross-power is sporadically high and low; finally, the rainfall cross-spectrum with the double sunspot number (Rz22) revealed a high cross-power around 20–22 yr which is more persistent in duration, compared to the 11-yr period. These wavelet results are compared with classical spectral analysis and with previous work results. We concluded that the phenomenon that influences most of Pelotas rainfall variability is ENSO, but only a minor part of the variance (~30%) can be described by a simple multi-linear dependence on solar/ENSO/QBO phenomena, this result could imply that non-linear coupling among sun and internal climatic variability (QBO, ENSO) has an important role in the local/regional climate variations.  相似文献   

15.
Seven different tree-ring parameters (tree-ring width, earlywood width, latewood width, maximum density, minimum density, mean earlywood density, and mean latewood density) were obtained from Qinghai spruce (Picea crassifolia) at one chronology site in the Hexi Corridor, China. The chronologies were analyzed individually and then compared with each other. Growth–climate response analyses showed that the tree-ring width and maximum latewood density (MXD) are mainly influenced by warm season temperature variability. Based on the relationships derived from the climate response analysis, the MXD chronology was used to reconstruct the May–August maximum temperature for the period 1775–2008 A.D., and it explained the 38.1% of the total temperature variance. It shows cooling in the late 1700s to early 1800s and warming in the twentieth century. Spatial climate correlation analyses with gridded land surface data revealed that our warm season temperature reconstruction contains a strong large-scale temperature signal for north China. Comparison with regional and Northern Hemisphere reconstructions revealed similar low-frequency change to longer-term variability. Several cold years coincide with major volcanic eruptions.  相似文献   

16.
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.  相似文献   

17.
Some drought years over sub-Saharan west Africa (1972, 1977, 1984) have been previously related to a cross-equatorial Atlantic gradient pattern with anomalously warm sea surface temperatures (SSTs) south of 10°N and anomalously cold SSTs north of 10°N. This SST dipole-like pattern was not characteristic of 1983, the third driest summer of the twentieth century in the Sahel. This study presents evidence that the dry conditions that persisted over the west Sahel in 1983 were mainly forced by high Indian Ocean SSTs that were probably remanent from the strong 1982/1983 El Ni?o event. The synchronous Pacific impact of the 1982/1983 El Ni?o event on west African rainfall was however, quite weak. Prior studies have mainly suggested that the Indian Ocean SSTs impact the decadal-scale rainfall variability over the west Sahel. This study demonstrates that the Indian Ocean also significantly affects inter-annual rainfall variability over the west Sahel and that it was the main forcing for the drought over the west Sahel in 1983.  相似文献   

18.
We developed four Georgei fir (Abies georgei var. smithii) tree-ring width chronologies at the timberline in the Sygera Mts. in southeast Tibet, China. All individual standard chronologies and a regional well-replicated ring-width composite chronology (RC) show significantly positive correlations with mean summer (June-August) temperature. Herein mean summer temperature was reconstructed for southeast Tibet back to A.D. 1765 based on RC. This reconstruction successfully captures recent warming observed in the instrumental record since 1961 with the last decade being the warmest period in the past 242 years. It agrees in general with other temperature reconstructions of the Tibetan Plateau and extratropical northern hemisphere. This study allows seeing recent warming on a longer time scale in southeast Tibet.  相似文献   

19.
We present a millennial long dendroclimatic reconstruction of spring/summer precipitation for southern-central England. Previous research identified a significant moisture stress signal in ring-width data measured from oak trees growing in southern England. In this study, we build upon this earlier work, specifically targeting south-central England, to derive a well replicated oak ring-width composite chronology using both living and historical material. The data-set includes 352 living trees (AD 1629–2009) and 1540 individual historical series (AD 663–1925). The period expressed by at least 50 trees in any year is AD 980–2009. Calibration experiments identify the optimal seasonal predictand target as March–July precipitation (1901–2007: r2 = 0.33). However, comparison with the long Kew Gardens precipitation record indicates a weakening in tree-growth/climate response from ~1800 to 1920 which we speculate may be related to smoke and sulphur dioxide (SO2) emissions at that time which may have also contributed to a decrease in tree productivity. The time-series derived using the regional curve standardisation method to capture lower frequency information shows a mediaeval period with alternating multi-decade-long dry and wet periods, with AD 1153–1172 being the wettest reconstructed 20-year period in the whole record. Drier conditions are prevalent from ~1300 to the early sixteenth century followed by a period of increasing precipitation levels. The most recent four centuries of the record appear similar to the mediaeval period with multiple decade-long dry and wet periods. The late twentieth century is the second reconstructed wettest period. These centennial hydroclimatic trends are in broad agreement with independent regional scale hydroclimatic reconstructions from tree-ring (East Anglia), historical, speleothem and peat water level proxy archives in the United Kingdom and appear coupled with reconstructed sea surface temperature changes in the North Atlantic which in turn influence the Atlantic meridional overturning circulation and westerly airflow across the UK.  相似文献   

20.
Summary Climatic determinants of summer (Nov-Mar) rainfall over southern Africa are investigated through analysis of sea surface temperatures (SST), outgoing longwage radiation (OLR) and tropospheric wind with respect to the Southern Oscillation Index (SOI) and the stratospheric quasi-biennial oscillation (QBO). Index-to-field correlation maps are presented at various lags for the austral spring and summer seasons to establish the spatial dependence and evolution of coherent, statistically significant features. The SOI signal is reflected in upper-level zonal wind anomalies over the equatorial Atlantic Ocean during spring. SSTs in the central Indian Ocean are significantly negatively correlated with the SOI in summer. On the other hand, OLR correlations are weak over southern Africa in the summer, implying that the SOI signal may not dominate interannual convective variability.QBO correlations with SST are relatively weak, but with 200 hPa zonal winds over the western equatorial Ocean, positive correlations are noted. A standing wave pattern is described in the sub-tropics. The OLR correlation pattern represents a dipole with increased convection over eastern and southern Africa in contrast to reduced convection over Madagascar when the QBO is in west phase.Contingency analyses indicate that the global indices are unreliable predictors in isolation. However the characteristics and domain of influence of SOI and QBO signals are identified and may offer useful inputs to objective multivariate models for different modes of southern African rainfall variability.With 12 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号