首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An ocean–atmosphere–sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5–3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (1) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (2) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N and 65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.  相似文献   

2.
Milankovitch Theory shows that glacial-interglacial cycles in the Quaternary are related to the variation of solar insolation forcing linked to the earth's astronomical parameters.However,the summer insolation at northern high latitudes,usually considered as the main external forcing for the ice age as Milankovitch pointed out,is marked by the 19- and 23-ka precession periodicities,which is not consistent with the glacial-interglacial cycles.On the other hand,recent studies indicate that the annual mean ...  相似文献   

3.
We describe the evolutionary response of northern and southern hemisphere summer monsoons to orbital forcing over the past 280,000 years using a fully coupled general circulation ocean-atmosphere model in which the orbital forcing is accelerated by a factor of 100. We find a strong and positive response of northern (southern) summer monsoon precipitation to northern (southern) summer insolation forcing. On average, July (January) precipitation maxima and JJA (DJF) precipitation maxima have high coherence and are approximately in phase with June (December) insolation maxima, implying an average lag between forcing and response of about 30° of phase at the precession period. The average lag increases to over 40° for 4-month precipitation averages, JJAS (DJFM). The phase varies from region to region. The average JJA (DJF) land temperature maxima also lag the June orbital forcing maxima by about 30° of phase, whereas ocean temperature maxima exhibit a lag of about 60° of phase at the precession period. Using generalized measures of the thermal and hydrologic processes that produce monsoons, we find that the summer monsoon precipitation indices for the six regions all fall within the phase limits of the process indices for the respective hemispheres. Selected observational studies from four of the six monsoon regions report approximate in-phase relations of summer monsoon proxies to summer insolation. However other observational studies report substantial phase lags of monsoon proxies and a strong component of forcing associated with glacial-age boundary conditions or other factors. An important next step will be to include glacial-age boundary condition forcing in long, transient paleoclimate simulations, along with orbital forcing.  相似文献   

4.
Ding  Zhaomin  Huang  Gang  Liu  Fei  Wu  Renguang  Wang  Pengfei 《Climate Dynamics》2021,56(11):3733-3747

In this paper, the response of global monsoon to changes in orbital forcing is investigated using a coupled atmosphere–ocean general circulation model with an emphasis on relative roles of precession and obliquity changes. When precession decreases, there are inter-hemispheric asymmetric responses in monsoonal precipitation, featuring a significant increase over most parts of the Northern Hemisphere (NH) monsoon regions and a decrease over the Southern Hemisphere (SH) monsoon regions. In contrast, when obliquity increases, global monsoon is enhanced except for the American monsoon. Dynamic effects (caused by changes in winds with humidity unchanged) dominate the monsoonal precipitation response to both precession and obliquity forcing, while thermodynamic effects (caused by changes in humidity with winds unchanged) is related to the northward extension of the North African summer monsoon. During minimum precession, the seasonal cycle of tropical precipitation is advanced with respect to the maximum precession. The rainfall increase in the transitional season (April-June in the NH and October-December in the SH) is dominated by the dynamic component. From an energetics perspective, the southward (northward) cross-equatorial energy transport during April-June (October-December) corresponds to a northward (southward) shift of tropical precipitation, which results in a seasonal advance in the migration of tropical precipitation. Nonetheless, there is no significant change in the seasonal cycle in response to obliquity forcing.

  相似文献   

5.
The response of monsoon circulation in the northern and southern hemisphere to 6?ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean–atmosphere general circulation models. The atmospheric response to increased summer insolation at 6?ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6?ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean–atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean–atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the observed changes in precipitation in all regions. Evaluation of the southern-hemisphere monsoons is limited by lack of quantitative reconstructions, but suggest that model skill in simulating these monsoons is limited.  相似文献   

6.
Four Holocene-long East Antarctic deuterium excess records are used to study past changes of the hydrological cycle in the Southern Hemisphere. We combine simple and complex isotopic models to quantify the relationships between Antarctic deuterium excess fluctuations and the sea surface temperature (SST) integrated over the moisture source areas for Antarctic snow. The common deuterium excess increasing trend during the first half of the Holocene is therefore interpreted in terms of a warming of the average ocean moisture source regions over this time. Available Southern Hemisphere SST records exhibit opposite trends at low latitudes (warming) and at high latitudes (cooling) during the Holocene. The agreement between the Antarctic deuterium excess and low-latitude SST trends supports the idea that the tropics dominate in providing moisture for Antarctic precipitation. The opposite trends in SSTs at low and high latitudes can potentially be explained by the decreasing obliquity during the Holocene inducing opposite trends in the local mean annual insolation between low and high latitudes. It also implies an increased latitudinal insolation gradient that in turn can maintain a stronger atmospheric circulation transporting more tropical moisture to Antarctica. This mechanism is supported by results from a mid-Holocene climate simulation performed using a coupled ocean-atmosphere model. Received: 7 July 1999 / Accepted: 21 July 2000  相似文献   

7.
Modulation of a monsoon under glacial forcing is examined using an atmosphere?Cocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air?Csea?Cland interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21?ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer convection.  相似文献   

8.
To study the time-dependent response of the Asian summer monsoon to obliquity forcing, we analyze a 284,000-year long transient simulation produced by a fully coupled global climate model (GCM) using a new phase mapping (PHASEMAP) approach. Here we focus on understanding the phase response of monsoonal circulation to insolation forcing at the Earth-orbital obliquity band (41 Kyr). Our results show that the East Asian summer monsoon (EASM) can be divided into two geographic regions: the North East Asian summer monsoon (NEASM) and the South East Asian summer monsoon (SEASM). The Indian summer monsoon (ISM) and the SEASM are in phase at the obliquity band, strengthened with an increase in obliquity from Obliquity minima (Omin) to Obliquity maxima (Omax). The NEASM is out of phase with the ISM and SEASM, weakened with an increase in obliquity from Omin to Omax. We hypothesize that the inverse phase between the NEASM and the ISM at the obliquity band results from an ISM–NEASM teleconnection linked to the formation mechanism of the Bonin High.  相似文献   

9.
Several studies have shown that the use of different calendars in paleoclimate simulations can cause artificial phase shifts on insolation forcing and climatic responses. However, these important calendar corrections are still often neglected. In this paper, the phase shifts at the precession band is quantitatively assessed by converting the model data of the transient GCM climate simulation of Kutzbach et al. (Clim Dyn 30:567?C579, 2008) from the ??fixed-day?? calendar to the ??fixed-angular?? calendar with a new and efficient approach. We find that insolation has a big phase shift in September?COctober?CNovember (SON) when the vernal equinox (VE) is fixed to March 21. At high latitude, the phase bias is up to 60° (about 3650?years). The insolation phase bias in SON in Southern Hemisphere (SH) is especially important because it can influence the timing of the SH summer monsoon response due to the large heat capacity of ocean. The calendar correction has minor effect (±2°) on the phase relationships between forcing and precipitation responses of the six global summer monsoons studied in Kutzbach et al. (2008). After correcting the calendar effect, especial on SH ocean temperature, the new phase wheel results are more similar for both hemispheres. The results suggest that the calendar effect should be corrected before discussing the dynamics between orbital forcing and climatic responses in phase studies of transient simulations.  相似文献   

10.
Global monsoons in the mid-Holocene and oceanic feedback   总被引:10,自引:3,他引:10  
The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean–atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations.  相似文献   

11.
The orbital configuration at the end of the last interglacial, 115,000 years BP (115 ky BP), was such that the Northern Hemisphere seasonal contrast was decreased when compared to the last interglacial maximum, 126 ky BP. Climatic reconstructions argue for increased latitudinal surface temperature and salinity gradients in the North Atlantic at 115 ky BP compared to 126 ky BP. According to proxy measurements the high-latitude ocean freshening may be explained by enhanced northward atmospheric moisture advection which would have then led to decreased deep convection activity in the northern seas. To evaluate such re-adjustments of the atmospheric circulation to the insolation forcing changes, we have explored the changes in atmospheric energy balance and transport with two AGCM experiments, one for each climate. We show that the northward increase in static heat transport at 115 ky BP to 126 ky BP constitutes a first order response to the changing insolation. It tends to equalise the heat balance of the atmosphere. Despite sea surface temperatures fixed (SSTs) to present-day this feature is strongly amplified by the air–sea heat flux exchanges. By comparing with OAGCM experiments for the same periods, we find that the simulated surface ocean heat flux responses to insolation forcing are similar whether the ocean is allowed to vary or not. The latent heat transport does not undergo the same changes as the dry static one. On an annual basis, it decreases over the high northern latitudes. This is the result of summer modification of moisture sources and transient activity. The latter appears to affect latent heat transport much more than the dry static one. The winter response, however, differs from the summer response which dominates the annual mean. There is an enhanced northward atmospheric moisture advection during winter at 115 ky BP, which is responsible for the freshening of high-latitude ocean during this season. This result seems to confirm the hypothesis inferred from marine data.  相似文献   

12.
Precession-related forcing of seasonal insolation changes in the northern hemisphere (NH) alternates between maximum NH seasonality (summer perihelion–increased insolation; winter aphelion–decreased insolation) and minimum NH seasonality (summer aphelion, and winter perihelion). With maximum NH seasonality, climate models simulate stronger NH summer monsoons that bring increased precipitation to North Africa and South and East Asia, in agreement with the in-phase relation of precipitation and NH summer insolation found in many paleoclimatic records. However paleoclimatic records in parts of the Mediterranean, the Middle East, and the interior of Asia also indicate increased moisture at times of maximum NH seasonality, a change not always clearly linked to stronger summer monsoons—either because these regions are at or beyond the boundaries of the present-day monsoon or because the observations allow multiple causal interpretations, or both. This study focuses on the possible role of changes in NH winter climate in explaining these wetter episodes. Using climate model simulations, we show that the ‘NH winter aphelion–decreased NH winter insolation’ orbital configuration is linked to the Mediterranean storm track and increased winter rains in the Mediterranean, the Middle East, and interior Asia. We conclude that wetter periods at precession time scales in these particular regions may have resulted either from increased wintertime storm track precipitation, or from a combination of increased winter and summer rainfall. Given this seasonal ambiguity, both possibilities need to be considered.  相似文献   

13.
Climate at the time of inception of the Laurentide Ice Sheet (LIS) at ~115 kyr BP is simulated with the fully coupled NCAR Community Climate System Model (CCSM3) and compared to a simulated preindustrial climate (circa 1870) in order to better understand land surface and atmospheric responses to orbital and greenhouse cooling at inception. The interaction between obliquity and eccentricity produces maximum decrease in TOA insolation in JJA over the Arctic but increases occur over the tropics in DJF. The land surface response is dominated by widespread summer cooling in the Northern Hemisphere (NH), increases in snowfall, and decreases in melt rates and total precipitation. CCSM3 responds to the climate forcing at 115 kyr BP by producing incipient glaciation in the areas of LIS nucleation. We find that the inception of the LIS could have occurred with atmospheric circulation patterns that differ little from the present. The location of the troughs/ridges, mean flow over the Canadian Arctic and dominant modes of the atmospheric circulation are all very similar to the present. Larger changes in mean sea level pressure occur upstream of the inception region in the North Pacific Ocean and downstream in Western Europe. In the North Pacific region, the 115 kyr BP anomalies weaken both the Pacific high and Aleutian low making NH summers look more like the PREIND winters and vice versa. The occurrence of cold JJA anomalies at 115 kyr BP favors outbreaks of cold air not in the winter as in contemporary climates but during the summer instead and reinforces the cooling from orbital and GHG reductions. Increased poleward eddy transport of heat and moisture characterizes the atmospheric response in addition to reduced total cloud cover in the Arctic.  相似文献   

14.
Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for?>?100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater column, wind, and ocean currents in the North Atlantic during the eruptions.  相似文献   

15.
The authors explore the response of the Northern African (NAF) monsoon to orbital forcing in the Last Interglacial (LIG) compared with its response to greenhouses gas (GHG) forcing under the SSP5-8.5 scenario simulated in CMIP6. When the summer surface air temperature increases by 1 °C over the Northern Hemisphere, the NAF monsoon precipitation and its variability during the LIG increase by approximately 51% and 22%, respectively, which is much greater than under SSP5-8.5 (2.8% and 4.3%, respectively). GHG forcing enhances the NAF monsoon mainly by increasing the atmospheric moisture, while the LIG's orbital forcing intensifies the NAF monsoon by changing the monsoon circulation. During the LIG, models and data reconstructions indicate a salient hemispheric thermal contrast between the North and South Atlantic, strengthening the mean-state NAF monsoon precipitation. The interhemispheric temperature contrast enhances atmosphere–ocean interaction and the covariability of the northward sea surface temperature gradient and Saharan low, strengthening the NAF monsoon variability.摘要与人为强迫引起的全球变暖相比, 末次间冰期是轨道强迫引起的过去80万年来最暖的一个间冰期, 但鲜有人研究末次间冰期中北非季风的响应. 因此, 本文基于CMIP6多模式模拟结果对比研究了末次间冰期和SSP5–8.5情景下北非季风的响应, 发现末次间冰期下北非季风平均降水及其降水变率均远大于SSP5–8.5情景下的结果. 轨道强迫导致的北大西洋暖于南大西洋增加了北非季风环流和平均降水, 同时, 南北大西洋海温梯度变化通过增强热带北大西洋的海气相互作用增大了海温梯度和撒哈拉低压的变率, 从而增强了北非季风降水变率.  相似文献   

16.
The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO2 concentration (CO2 forcing). The role of vegetation and ocean feedback, CO2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover—although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial–glacial transition, while vegetation, ocean and atmospheric CO2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice.  相似文献   

17.
Long (130,000 years) transient simulations with a coupled model of intermediate complexity (CLIMBER-2) have been performed. The main objective of this study is to examine leads and lags in the response to the climate system to separate obliquity and precession-induced insolation changes. Focus is on the role of internal feedbacks in the coupled atmosphere/ocean/sea-ice/vegetation system. No interactive ice sheets were used. The results show that leads and lags occur in response to the African/Asian monsoon, temperatures at high latitudes and the Atlantic thermohaline circulation. For the monsoon, leads and lags of the monthly precipitation with respect to the precession parameter were found, which are strongly modified by vegetation. In contrast, no lag was observed for the annual precipitation. At high latitudes during late winter/early spring a vegetation-induced lag with respect to the precession parameter was found in surface air temperatures. Again, no annual lag was detected. The lag in the monthly surface air temperatures induces a lag in the annual overturning in the Atlantic Ocean by changing the strength of the deep convection. The lag is several thousand years. The obliquity-related forcing does not give rise to lags in the climate system. We conclude that lags in monthly climatic variables, which are due to vegetation feedbacks, can result in an annual lag when a climatic process (like deep water formation) acts as a filter for certain months.  相似文献   

18.
Taking advantage of the fact that the Vostok deuterium (δD) record now covers almost two entire climatic cycles, we have applied the orbital tuning approach to derive an age-depth relation for the Vostok ice core, which is consistent with the SPECMAP marine time scale. A second age-depth relation for Vostok was obtained by correlating the ice isotope content with estimates of sea surface temperature from Southern Ocean core MD 88-770. Both methods lead to a close correspondence between Vostok and MD 88-770 time series. However, the coherence between the correlated δD and insolation is much lower than between the orbitally tuned δD and insolation. This reflects the lower accuracy of the correlation method with respect to direct orbital tuning. We compared the ice and marine records, set in a common temporal framework, in the time and frequency domains. Our results indicate that changes in the Antarctic air temperature quite clearly lead variations in global ice volume in the obliquity and precession frequency bands. Moreover, the average phase we estimated between the filtered δD and insolation signals at precessional frequencies indicates that variations in the southern high latitude surface temperature could be induced by changes in insolation taking place during a large period of the summer in northern low latitudes or winter in southern low latitudes. The relatively large lag found between Vostok δD variations and obliquity-driven changes in insolation suggests that variations in the local radiative balance are not the only mechanism responsible for the variability in surface temperature at those frequencies. Finally, in contrast to the cross-spectral analysis method used in previous studies, the method we use here to estimate the phases can reveal errors in cross-correlations with orbitally tuned chronologies. Received: 11 April 1995 / Accepted: 19 July 1995  相似文献   

19.
使用一个改进的二维能量平衡模式模拟了过去0.8 Ma冰期-间冰期旋回期间北半球各纬度带的地表温度,并以65°N的地表温度为代表与南极冰芯记录进行了比较.通过敏感性试验,分析了日射量、温室气体、沙尘气溶胶强迫和水汽反馈的辐射-气候效应.结果显示,日射量变化不足以解释冰期-间冰期旋回期间北半球的地表温度变化,大气温室气体(...  相似文献   

20.
We note that orbital (Milankovitch) variations, in particular the precession of the equinoxes, can lead to profound variations in the flux of heat from the tropics to higher latitudes. The mechanism involves changing the intensity of the Hadley circulation by varying the maximum displacement from the equator of the zonally averaged surface temperature maximum in summer. The precession of the equinoxes causes this quantity to vary by more than a factor of 2. The intensity of the Hadley circulation has a major influence on the heat fluxes in the winter hemisphere. Summer heat fluxes are generally small. Although the precession cycle is characterized by periods in the neighborhood of 20000 years, the variations are modulated by the eccentricity whose variation is dominated by periods in the neighborhood of 100000 years and 400000 years. We show how the fact that both small and large heat fluxes lead to low snowfall (and, hence, small glacial accumulation) causes the demodulation of the heat flux leading to dominant eccentricity periods in the resulting glaciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号