首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a regional climate model with detailed land surface processes (RegCM2), East Asian monsoon climates at 6 ka BP and 21 ka BP are simulated by prescribing vegetation and employing paleovegetation respectively in order to examine land surface effects on East Asian climate system and the potential mechanisms for climate change. The RegCM2 with a 120 × 120 km2 resolution has simulated the enlargement of the seasonal cycle of insolation, the temperature rising the whole year, and the reduction of perpetual snow in high latitudes at 6 ka BP. The simulation shows the East Asian summer monsoon strengthening, precipitation and PE increasing, and the monsoon rain belt shifting westwards and northwards. Effect of paleovegetation included in the modeling reduced surface albedo and caused an increase in the winter temperature, which led to weakening of the winter continental cold anticyclone over China. The results make the seasonal characteristics of simulated temperature changes in better agreement with the geological records, and are an improvement over previous simulations of Paleoclimate Modeling Intercomparison Project (PMIP). The RegCM2 simulated the 21 ka BP climate with lowered temperature throughout the year, and with precipitation reduced in most areas of East Asia (but increased in both the Tibetan Plateau and Central Asia). Low temperature over East Asia led to the strengthening of the East Asian winter monsoon and the shrinking of the summer monsoon. The effect of paleovegetation included in the experiment has enlarged the glacial climate influence in East Asia, which is closer to geological data than the PMIP simulations directly driven by insolation, glaciation and low CO2 concentration.  相似文献   

2.
Changes in the water balance of Eurasia and northern Africa in response to insolation forcing at 6000 y BP simulated by five atmospheric general circulation models have been compared with observations of changes in lake status. All of the simulations show enhancement of the Asian summer monsoon and of the high pressure cells over the Pacific and Central Asia and the Middle East, causing wetter conditions in northern India and southern China and drier conditions along the Chinese coast and west of the monsoon core. All of the models show enhancement of the African monsoon, causing wetter conditions in the zone between ca 10–20 °N. Four of the models show conditions wetter than present in southern Europe and drier than present in northern Europe. Three of the models show conditions similar to present in the mid-latitude continental interior, while the remaining models show conditions somewhat drier than present. The extent and location of each of the simulated changes varies between the models, as does the mechanism producing these changes. The lake data confirm some features of the simulations, but indicate discrepancies between observed and simulated climates. For example, the data show: (1) conditions wetter than present in central Asia, from India to northern China and Mongolia, indicating that the simulated Asian monsoon expansion is too small; (2) conditions wetter than present between ca. 10–30 °N in Africa, indicating that the simulated African monsoon expansion is too small; (3) that northern Europe was drier, but the area of significantly drier conditions was more localized (around the Baltic) than shown in the simulations; (4) that southern Europe was wetter than present, apparently consistent with the simulations, but pollen data suggest that this reflects an increase in summer rainfall whereas the models show winter precipitation, and (5) that the mid-latitude continental interior was generally wetter than present. Received: 29 March 1996 / Accepted: 31 May 1996  相似文献   

3.
Predominantly in the context of Japan GMS-derived TBB data,study is undertaken of the relationship between the winter thermal conditions of the Qinghai-Xizang Plateau(QXP)and anomaly in Asian-Australian monsoons during northern summer.Evidence suggests that anti-correlation of cold air activity of East Asia with that of Mid Asia is responsible for the counterpart of the ground thermal characteristics anomaly on an interannual basis between the SW and NEQXP;the winter thermal pattern bears a closer correlativity with the subsequent summertime Asian-Australian monsoons anomaly;as the thermal distribution is reversed,so are the convection features over North and South China,maritime continent,the NW and SW Pacific at tropical and equatorial latitudes,resulting in vast difference between East-Asian summer and Indonesian-North Australian winter monsoons;the subtropical monsoon-associated rainbelt over the mid-lower Changjiang basins exhibits the discrepancy in vigor and northerly shift timing.Besides,part of the results has been further borne out through analysis of temperature and precipitation records of the eastern portion of the country in monsoon climate.  相似文献   

4.
Predominantly in the context of Japan GMS-derived T_(BB) data,study is undertaken of therelationship between the winter thermal conditions of the Qinghai-Xizang Plateau(QXP)andanomaly in Asian-Australian monsoons during northern summer.Evidence suggests that anti-correlation of cold air activity of East Asia with that of Mid Asia is responsible for the counterpartof the ground thermal characteristics anomaly on an interannual basis between the SW and NEQXP;the winter thermal pattern bears a closer correlativity with the subsequent summertimeAsian-Australian monsoons anomaly;as the thermal distribution is reversed,so are the convectionfeatures over North and South China,maritime continent,the NW and SW Pacific at tropical andequatorial latitudes,resulting in vast difference between East-Asian summer and Indonesian-NorthAustralian winter monsoons;the subtropical monsoon-associated rainbelt over the mid-lowerChangjiang basins exhibits the discrepancy in vigor and northerly shift timing.Besides,part of theresults has been further borne out through analysis of temperature and precipitation records of theeastern portion of the country in monsoon climate.  相似文献   

5.
地中海多冬雨,所以那里的“降水最大月份”在冬季。本研究发现该“最大降水月份”是缓慢东移的。它冬末初春经过土耳其到中亚,春夏季到新疆天山,夏季到甘肃,秋季延伸到陕西,成为陕西等地的“华西秋雨”。  相似文献   

6.
The variations of both total and extreme precipitations over Asia are characterized by large regional features and seasonality. Extreme precipitation mainly occurs in summer and then in autumn over South Asia but it is a prominent phenomenon in all seasons over Southeast Asia. It explains above 40% of the total precipitation in winter over India, while the ratio of extreme precipitation to total precipitation is 30% or smaller in all seasons over southern-central China. Over Southeast Asia, the largest ratio appears in winter. The extreme precipitation over Southeast Asia (EPSEA) exhibits significant positive trends in all seasons except autumn. The long-term increase in summer EPSEA is associated with significant surface warming over extratropical Asia and the Indo-Pacific oceans and linked to a large-scale anomalous cyclonic pattern over Southeast Asia. An increase in de-trended summer EPSEA is associated with less significant surface warming. However, it is still clearly linked to an anomalous cyclonic pattern over Southeast Asia, contributed by intensifications of monsoon flow from the west, trade wind from the east, and cross-equatorial flow over Indonesia. The antecedent features of increased summer EPSEA include an overall warming over the tropical–subtropical northern hemisphere and an anomalous cyclonic pattern over Southeast Asia in winter and spring. When the large-scale Asian monsoon (measured by the Webster-Yang monsoon index) or the South Asian monsoon is strong, summer extreme precipitation mainly increases over tropical Asia. When monsoon is strong over Southeast Asia or East Asia, extreme precipitation increases over Southeast Asia and decreases over East Asia. A strong summer monsoon over Southeast Asia or East Asia is also followed by decreased autumn extreme precipitation over Southeast Asia.  相似文献   

7.
This paper addresses the ‘ice-free Arctic’ issue under the future global warming scenario. Four coupled climate models used in the third phase of the Coupled Model Intercomparison Project (CMIP3) were selected to project summer climate conditions over East Asia once the Arctic becomes ice-free. The models project that an ice-free Arctic summer will begin in the 2060s under the SRESA1B (according to IPCC Special Reports on Emissions Scenarios) simulations. Our results show that the East Asian summer monsoons will tend to be stronger and that the water vapor transport to central northern China will be strengthened, leading to increased summer precipitation in central northern China. The models also project an intensified Antarctic Oscillation, a condition which favors increased precipitation in South China’s Yangtze River Valley. The overall precipitation in Northwest China is projected to increase under ice-free Arctic summer conditions.  相似文献   

8.
In this study, the ability of a regional climate model, based on MM5, to simulate the climate of the Middle East at the beginning of the twenty-first century is assessed. The model is then used to simulate the changes due to global warming over the twenty-first century. The regional climate model displays a negative bias in temperature throughout the year and over most of the domain. It does a good job of simulating the precipitation for most of the domain, though it performs relatively poorly over the southeast Black Sea and southwest Caspian Sea. Using boundary conditions obtained from CCSM3, the model was run for the first and last 5 years of the twenty-first century. The results show widespread warming, with a maximum of ~10 K in interior Iran during summer. It also found some cooling in the southeast Black Sea region during spring and summer that is related to increases in snowfall in the region, a longer snowmelt season, and generally higher soil moisture and latent heating through the summer. The results also show widespread decreases in precipitation over the eastern Mediterranean and Turkey. Precipitation increases were found over the southeast Black Sea, southwest Caspian Sea, and Zagros mountain regions during all seasons except summer, while the Saudi desert region receives increases during summer and autumn. Changes in the dominant precipitation-triggering mechanisms were also investigated. The general trend in the dominant mechanism reflects a change away from the direct dependence on storm tracks and towards greater precipitation triggering by upslope flow of moist air masses. The increase in precipitation in the Saudi desert region is triggered by changes in atmospheric stability brought about by the intrusion of the intertropical convergence zone into the southernmost portion of the domain.  相似文献   

9.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

10.
长江中下游地区冬夏干湿韵律特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过分析中国160站1952—2013年的月平均降水观测资料,揭示了长江中下游地区冬季和夏季降水间存在显著的韵律现象,即当该地区冬季降水异常偏少(偏多)时,次年夏季降水也趋于异常偏少(偏多),这里称之为干(湿)韵律现象。对干、湿韵律年大气环流背景的分析结果显示,干韵律年和湿韵律年对应的环流形势基本相反:在干(湿)韵律年冬季,东亚地区500 hPa位势高度距平呈现西高东低(东高西低)的分布型,中国南方东部主要受偏北(南)风异常控制,这不利(有利)于低纬度暖湿气流向长江中下游地区输送,导致该地区冬季降水异常偏少(多);在次年夏季,西北太平洋副热带高压异常偏弱(强),不利(有利)于西南暖湿气流向中国东部地区输送,使得长江中下游地区夏季降水也异常偏少(多)。研究进一步指出,长江中下游地区的冬夏干、湿韵律现象与东亚冬夏季风活动的强度密切相关。干、湿韵律现象多在东亚冬夏季风强度变化一致的情况下出现:冬、夏季风一致偏强时多导致干韵律现象,而一致偏弱时易导致湿韵律现象。  相似文献   

11.
The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model’s performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.  相似文献   

12.
亚洲夏季风的年际和年代际变化及其未来预测   总被引:31,自引:12,他引:19       下载免费PDF全文
本文是对我们近五年在亚洲夏季风年代际与年际变率及其未来预测方面研究的一个综述.主要包括下列三个问题:(1)根据123年中国夏季降水资料和印度学者的分析,检测出亚洲夏季风具有明显的年代际尺度减弱,这种年代际变化使中国东部(包括东亚)和南亚夏季降水的格局在过去60年中发生了明显变化.在东亚,从1970年代后期开始,主要异常雨带有不断南移的趋势,结果造成了南涝北旱的降水分布,这主要受到60~80年年代际振荡的影响.青藏高原前冬和春季积雪的年代际减少与热带中东太平洋海表温度的年代际增加是东亚降水型改变的主要原因,这是通过减弱亚洲地区夏季海陆温差与夏季风强度而实现的.未来亚洲夏季风的预测表明,东亚夏季风和南亚夏季风对气候变暖有十分不同的响应.东亚夏季风在本世纪将增强,雨带北推,尤其在2040年代之后;而南亚夏季风环流将继续减弱.这种不同的变化是由于两者对高低层海陆热力差异的不同响应造成.(2)年际尺度的变率在亚洲夏季风区主要表现为2年与4~7年的振荡.本文着重分析了2年振荡(TBO)形成的过程、机理及其对东亚降水的影响.对TBO-海洋机理进行了具体的改进,说明了东亚夏季风降水深受TBO影响的原因,尤其是阐明了长江型(YRV) TBO和淮河型(HRV) TBO的特征及其形成的循环过程.(3)在总结亚洲夏季风时期遥相关型的基础上,本文提出了季节内和年际尺度的低空遥相关型:即西北太平洋季风的遥相关型与印度“南支”和“北支”遥相关型.它们基本上反映了沿低空夏季风强风速带Rossby波群速度传播的结果.据此可以根据西北太平洋和印度夏季风的变化分别预测中国梅雨和华北雨季来临和降水异常.最后研究还表明,在本世纪亚洲夏季风可能更显著地受到人类活动造成的全球变暖的影响,未来的亚洲夏季风活动是人类排放的CO2引起的全球变暖与自然变化(海洋和陆面过程(积雪))共同作用的结果.  相似文献   

13.
根据全球气溶胶气候模式GEM-AQ/EC的1995~2004年模拟,分析了青藏高原大气黑碳气溶胶的来源、传输及沉降季节特征。研究表明:青藏高原黑碳气溶胶主要来自自由对流层和大气边界层的输送。相对于自由对流层的黑碳输送,紧邻青藏高原的南亚、东亚以及东南亚大气边界层的输送更有效,它形成了青藏高原由北向南、自西往东黑碳气溶胶浓度和沉降明显递增的基本分布形态。横跨欧亚大陆自由对流层的黑碳气溶胶由西向东向青藏高原的输送全年不变,夏季输送路径最北但强度最弱,冬季路径最南而强度最强。大气边界层黑碳气溶胶的输送受控于亚洲季风环流变化,来自南亚的黑碳气溶胶在春季越过孟加拉湾传输进入高原东南部,夏季则可翻越喜马拉雅山抵达青藏高原南部腹地;同时我国中部排放的黑碳气溶胶也在东亚夏季风向北扩展中驱动它从东向西往青藏高原东北部传输。从秋季到冬季,随着夏季风撤退,南亚黑碳源区向青藏高原传输衰退,东亚冬季风的反气旋性环流的南侧及西南侧的偏东风携带秋季我国东南部源区和冬季东南亚源区黑碳气溶胶向青藏高原东南部传输。受青藏高原明显的暖湿季和干冷季气候影响,干湿沉降分别主导了青藏高原冬季和夏季黑碳沉降,夏季青藏高原黑碳气溶胶沉降总量大多超过8~10 kg·km-2,在高原东北部的最高值超过40 kg·km-2。冬季青藏高原黑碳气溶胶沉降量最低,大部地区黑碳沉降低于5 kg·km-2。青藏高原黑碳沉降的冬夏季节相差约为2~8倍。  相似文献   

14.
The response of monsoon circulation in the northern and southern hemisphere to 6?ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean–atmosphere general circulation models. The atmospheric response to increased summer insolation at 6?ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6?ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean–atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean–atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the observed changes in precipitation in all regions. Evaluation of the southern-hemisphere monsoons is limited by lack of quantitative reconstructions, but suggest that model skill in simulating these monsoons is limited.  相似文献   

15.
Response of the East Asian summer monsoon(EASM) rainfall to external forcing(insolation,volcanic aerosol,and greenhouse gases) is investigated by analysis of a millennium simulation with the coupled climate model ECHO-G.The model reproduces reasonably realistic present-day EASM climatology.The simulated precipitation variation in East Asia over the last millennium compares favorably with the observed and proxy data.It is found that the features and sensitivity of the forced response depend on latitude.On...  相似文献   

16.
21st century climate change in the Middle East   总被引:1,自引:0,他引:1  
This study examined the performance and future predictions for the Middle East produced by 18 global climate models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report. Under the Special Report on Emission Scenarios A2 emissions scenario the models predict an overall temperature increase of ~1.4 K by mid-century, increasing to almost 4 K by late-century for the Middle East. In terms of precipitation the southernmost portion of the domain experiences a small increase in precipitation due to the Northward movement of the Inter-Tropical Convergence Zone. The largest change however is a decrease in precipitation that occurs in an area covering the Eastern Mediterranean, Turkey, Syria, Northern Iraq, Northeastern Iran and the Caucasus caused by a decrease in storm track activity over the Eastern Mediterranean. Other changes likely to impact the region include a decrease of over 170,000 km2 in viable rainfed agriculture land by late-century, increases in the length of the dry season that reduces the length of time that the rangelands can be grazed, and changes in the timing of the maximum precipitation in Northern Iran that will impact the growing season, forcing changes in cropping strategy or even crop types.  相似文献   

17.
Important progresses of the study of the general circulation and monsoons in East Asia,which have beenmade since the pioneering work“Monsoons in Southeast Asia and rainfall amount in China”by Prof.ZhuKezhen,are extensively reviewed in memory of this founder of modern meteorology in China.The first parthas addressed the bimodality of the general circulation and the abrupt seasonal change.The second part hasdealt with the role of the continent-ocean contrast and topography in the dynamic and thermal processes of mon-soon development,including winter and summer monsoons,and associated heat sources and sinks.The thirdpart has discussed the monsoonal precipitation,with a special emphasis on the mesoscale disturbance,low-leveljet and interannual variability of Meiyu(plum rains).  相似文献   

18.
不同分辨率CCSM4对东亚和中国气候模拟能力分析   总被引:9,自引:4,他引:5       下载免费PDF全文
田芝平  姜大膀 《大气科学》2013,37(1):171-186
本文利用通用气候系统模式CCSM4在三种水平分辨率下的工业化革命前期气候模拟试验,结合观测和再分析资料,比较了各分辨率下模式对中国温度和降水、东亚海平面气压和850 hPa风场的模拟能力,综合评价了模式分辨率对东亚和中国气候模拟的影响.结果表明,三种分辨率对中国温度均具有很好的模拟能力,除春季外,低分辨率(T31,约3.75°×3.75°)对全年温度的模拟能力均要稍好于中(f19,约1.9°×2.5°)、高(f09,约0.9°×1.25°)分辨率;各分辨率对中国降水的模拟能力远不如温度,除冬季外全年都出现的中部地区虚假降水并未因为模式分辨率提高而得到本质改善;对于东亚海平面气压场,低分辨率在冬季模拟能力相对最好,中等分辨率在夏季相对较好,而高分辨率的模拟能力均表现最差;低分辨率对850 hPa东亚冬季风和夏季风的模拟能力均要好于中、高分辨率,而两种较高分辨率的模拟能力则比较接近.总的来说,低分辨率CCSM4在东亚和中国气候模拟中表现出了较大优势,加之其计算代价小,适合进行需要较长时间积分的气候模拟研究.  相似文献   

19.
The ability of the Parallel Climate Model (PCM) to reproduce the mean and variability of hydrologically relevant climate variables was evaluated by comparing PCM historical climate runs with observations over temporal scales from sub-daily to annual. The domain was the continental U.S, and the model spatial resolution was T42 (about 2.8 degrees latitude by longitude). The climate variables evaluated include precipitation, surface air temperature, net surface solar radiation, soil moisture, and snow water equivalent. The results show that PCM has a winter dry bias in the Pacific Northwest and a summer wet bias in the central plains. The diurnal precipitation variation in summer is much stronger than observed, with an afternoon maximum in summer precipitation over much of the U.S. interior, in contrast with an observed nocturnal maximum in parts of the interior. PCM has a cold bias in annual mean temperature over most of the U.S., with deviations as large as ?8 K. The PCM daily temperature range is lower than observed, especiallyin the central U.S. PCM generally overestimates the net solar radiation over most of the U.S, although the diurnal cycle is simulated well in spring, summer and winter. In autumn PCM has a pronounced noontime peak in solar radiation that differs by 5–10% from observations. PCM'ssimulated soil moisture is less variable than that of a sophisticated land-surface hydrology model, especially in the interior of the country. PCM simulates the wetter conditions over the southeastern U.S. and California during warm (El Niño) events, but shifts the drier conditions in the PacificNorthwest northward and underestimates their magnitude. The temperature response to the North Pacific Oscillation is generally captured by PCM, but the amplitude of this response is overestimated by a factor of about two.  相似文献   

20.
东亚季风近几十年来的主要变化特征   总被引:14,自引:4,他引:10       下载免费PDF全文
王会军  范可 《大气科学》2013,37(2):313-318
本文简要综述了关于东亚夏季风和冬季风近几十年来的主要变化特征的若干研究结果,特别是关于其年代际变化方面.夏季风及夏季气候的主要变化特征有:1970年代末之后东亚夏季风的年代际时间尺度的减弱以及相应的我国夏季降水江淮流域增多而华北减少、1992年之后我国华南夏季降水增多、1999年之后我国长江中下游夏季降水减少而淮河流域夏季降水增多、东亚夏季风和ENSO之间的年际变化相关性存在不稳定性.而关于东亚冬季风与冬季气候的主要变化特征有:1980年代中期之后东亚冬季风及其年际变率减弱、1970年代中期之后冬季风和ENSO的年际变化相关性较弱、近年来的北极秋季海冰减少对北半球冬季积雪增多有显著贡献、东北冬季积雪在1980年代中期以后增多.与上述变化有关的极端气候和物候都发生了多方面的变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号