首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This work analyzes some physical and microphysical properties of Mesoscale Convective Systems (MCSs) and cloud-to-ground lightning. Satellite data from the GOES-10 infrared and NOAA-18 and TRMM microwave channels and lightning information from the Brazilian lightning detection network (BrasilDAT) were utilized for the period from 2007 to 2009. Based on an automatic MCSs detection method, 720 MCSs life cycles were identified during the period and in the region of study, with a lightning detection efficiency of over 90%. During the diurnal cycle, maximum electrical activity occurred close to the time of maximum convective cloud fraction (18 UTC), and 3 h after the maximum normalized area expansion rate. Diurnal cycles of both properties were modulated by diurnal heating, and thus could be used to monitor diurnal variability of lightning occurrence. The electrical activity was more intense for the widest (Pearson’s correlation of 0.96) and deeper (Pearson’s correlation of 0.84) clouds, which reached 390 km size and 17 km maximum cloud top height. Area growth during the initial phase of MCSs exerted a strong influence on their size and duration, and thus also showed a potential for defining the possibility of electrical activity during their life cycle. The average lightning life cycle exhibited a maximum close to MCSs maturation, while the maximum average lightning density occurred in the MCSs initial life cycle stage. The growth rate of electrical activity during the early stages can indicate the strength of convection and the possible duration of systems with lightning occurrence. Strong condensation processes and mass flux during the growth phase of the systems can provide favorable conditions for cloud electrification and lightning occurrence. A comparison of high microwave frequencies with lightning data showed a strong relationship of vertically integrated ice content and particle size with lightning occurrence, with Pearson's correlation of 0.86 and 0.96, respectively. The polarization difference in the 85 GHz channel showed that electrical activity increases linearly with polarization reduction, associated with a high value of Pearson's correlation coefficient (above 0.90). This suggests that regions with more intense electrical activity are predominantly located in areas with a high concentration of larger ice particles that are vertically oriented, due to the existence of intense updrafts and the electric field. These results demonstrate the potential use of thermodynamic, dynamic and microphysical characteristics for analyzing thunderstorms severity, and as additional information for nowcasting and monitoring electrical activity over large regions that lack ground-based lightning sensors.  相似文献   

2.
A 6-year analysis (including data of 36 million strokes) of the spatial and temporal occurrence of lightning strokes in Germany and neighbouring areas is presented. The analysis on a high-resolution grid with spatial resolution of 1 km allows assessing the local risk of lightning and studying local effects, e.g. the influence of orography on the occurrence of thunderstorms. The analysis reveals spatial and temporal patterns: the highest number of lightning strokes occurs in the pre-alpine region of southern Germany, further local maxima exists in low mountain ranges. The lowest number of lightning strokes is present in areas of the North Sea and Baltic Sea. Despite a high year-to-year variability of lightning rates, on average a clear annual cycle (maximum June to August) and diurnal cycle (maximum in the afternoon) are present. In addition to this well-known annual and diurnal pattern, the analysis shows that those are intertwined: the diurnal cycle has an annual cycle, visible in the time of daily maximum which occurs later in the afternoon in summer compared to spring and autumn. Furthermore, the annual cycle of lightning is varying geographically, e.g. offshore and coastal regions show a lower amplitude of the annual cycle and a later maximum (autumn) compared to inland (mountainous) regions. In addition, the annual and diurnal cycles of lightning attributes are analysed. The analysis reveals rising height of inner-cloud lightning during the year with a maximum in late summer.  相似文献   

3.
Abstract

We have made a preliminary study of cloud‐to‐ground lightning over southern Ontario and the adjoining Great Lakes region. The lightning data set, using magnetic direction finding, is sufficiently accurate to study lightning climatology. Cloud‐to‐ground flash totals have been found for the three warm seasons 1989–91. A large variation in flash total, lightning‐day frequency and number of high flash density storms occurs over the area, with the maximum in southwestern Ontario. The area of the maximum also has a strong diurnal cycle and relatively few positive flashes. Several physical causes may contribute to this. Lake areas usually have slightly fewer flashes than nearby land areas and warm water usually has more flashes than cold water. The Great Lakes do produce more lightning than ocean areas. Convergence lines of lake breezes and other lake circulations can, however, be sites for storms with intense lightning. High surface temperature and moisture leads to an increase in lightning generation. Over land, upslope flow increases lightning‐producing storms and downslope flow decreases them. High flash density storms may be favoured by smooth rather than rough ground, and by open farmland rather than forest. On the other hand, there does not seem to be a clear urban effect increasing lightning in the Great Lakes  相似文献   

4.
梁丽  庞文静  雷勇  王志超  梁存 《气象科学》2019,39(4):515-523
基于国家雷电定位网2010—2014年雷电定位数据和2010—2013年地面气象资料,分析了北京地区各季地闪活动时空分布特征及其与降水量的关系。结果表明,北京地区雷电活动具有明显的日变化特征;雷电发生频次随季节变化明显,负闪和全地闪在秋季变化幅度最大;雷电发生频次最大值和最小值出现时间随季节变化,春季、夏季日循环峰值出现时间在22∶00—23∶00(北京时间),秋季日循环峰值出现时间在01∶00,冬季则为15∶00且不具有显著性;从空间分布上看,可以看出雷电活动分布具有局地性特征,北京地区雷电活动最频繁的地区集中在密云县和平谷区的迎风坡一带、通州区与市辖区交界处,高雷暴日区域位于延庆县、昌平区和平谷西部,延庆县和怀柔区的北部及房山区和门头沟交界处的西部,雷暴发生频次和雷暴日空间分布不完全吻合。通过各季雷电发生频次日变化序列的谐波分析可知,日循环为日变化的主要信号。春季、夏季、秋季雷电发生频次和降水量两者整体变化趋势一致,降水量较雷电发生频次变化缓慢。  相似文献   

5.
Using 10-year lightning localization data observed by the TRMM (Tropical Rainfall Measuring Mission) Lightning Imaging Sensor (LIS), the relationship between lightning activity and a series of convective indices was investigated over nine monsoon-prone areas of China in which high-impact weather (HIW) events are frequently observed.Two methods were used to verify and reconstruct LIS lightning data. First, LIS lightning flash data were verified by both surface thunderstorm reports and ground-based lightning detection data. Seasonal, monthly, and 5-day distributions of LIS observed lightning activity agree well with the surface reports and ground-based lightning observations. Second, due to LIS's low sampling frequency, a data reconstruction and compensation scheme for LIS lightning observations was designed using both LIS lightning seasonal diurnal cycles and surface thunderstorm reports. After data reconstruction, five lightning products were derived: daily mean and maximum LIS flash rate, daily mean and maximum LIS lightning cell rate, and number of lightning days per five day period.Then, a series of convective indices describing convection conditions were derived from radiosonde data according to atmospheric instability and convective potential analysis. Correlation analysis for each study region was done between 10-year lightning derived products and corresponding convective indices by 5-day periods. The correlation analysis results show that higher lightning flash rate and lightning probability are associated with more unstable air and smaller vertical wind shear in a nearly saturated lower layer in most of the study regions. But the correlation varies from region to region. The best correlation between lightning activity and convective indices was found in eastern and southern China, whereas the correlation is lowest in some inland or basin topography regions in which topographic effects are more significant. Moreover, ambient moisture plays a much more important role in the convective development of thunderstorms in southern China than other regions. Thunderstorm development mechanism differences among regions were also discussed.Based on the close relationship between lightning activity and convective indices, some regression equations for forecasting 5-day mean or maximum LIS lightning flash rate and lightning area (a thunderstorm cell) rate, and 5-day lightning days for the study regions were developed using convective indices as predictors. The verifications show that the convective index-based lightning forecast methods can provide a reasonable lightning outlook including probability and lightning flash rate forecasts for a 5-day period.  相似文献   

6.
In the present study, the diurnal variations in the time of initiation of rainfall, during two contrasting monsoon seasons of 2008 (below normal) and 2009 (normal) over the Indian subcontinent and surrounding oceanic areas has been analyzed. Harmonic analysis was used to detect the spatial variation of the diurnal cycle of the time of initiation of rainfall, as obtained at half-hourly intervals from the Kalpana 1 satellite. In general, the diurnal cycle in the time of initiation is strongest in regions where convective clouds are predominant, while it is weaker in regions where the clouds are predominantly stratiform with long-lived medium to high cloud cover. In the interior of the subcontinent, the time of maximum mainly occurred in the afternoon to evening hours, with a distinct southeast to northwest gradation. Substantial spatial variations were detected in the diurnal patterns between a normal and below normal monsoon years. Spatially, rainfall is initiated later in 2009 compared to 2008 over most of the interior of the Indian subcontinent. The most distinct difference was observed over the core monsoon region in central India, where the diurnal patterns were stronger in 2009 compared to 2008. On the other hand, over the oceans surrounding the Indian subcontinent, the initiation times are generally earlier in 2009.  相似文献   

7.
用TRMM/LIS资料分析长江三角洲地区的闪电活动   总被引:10,自引:2,他引:10       下载免费PDF全文
统计分析了1998~2004年长江三角洲(长三角)地区由星载闪电成像传感器(LIS)观测的闪电资料,发现了该地区LIS闪电活动的一些时空分布特征:闪电次数的年差异较大,最多年份是最少年份的3倍;7~8月盛夏季节是闪电高发期,闪电次数和日数分别占全年的70%和60%;闪电高发期间的抬升指数(IL)小于-2℃;7~8月闪电主要集中于午后,3~6月则集中在上半夜;上海地区单日LIS闪电次数超过8次时,多伴有强对流天气和短时强降水;长三角地区的闪电活动区主要分布在上海的东部,部分沿江、沿湖地区和浙江的龙门山等山区;水域闪电少于陆地,大城市城区下风方向闪电活动较多,部分雷暴刚入海时有加强的趋势。分析表明:太阳辐射的季节变化和日变化等是造成闪电时间分布的主要原因;地形的动力作用和下垫面的物理特性及其差异是造成气候意义上中小尺度闪电空间分布差异的主要原因。文章对LIS闪电定位资料进行了探测效率订正,根据LIS注视时间计算了闪电密度,并与地基闪电定位资料和多普勒天气雷达资料进行了对比。LIS闪电活动特征的分析,对雷暴预警和防灾减灾有指导意义。  相似文献   

8.
利用2010—2018年全球闪电定位网(WWLLN)观测资料, 采用基于闪电密度的空间聚类算法(DBSCAN)建立了西北太平洋地区雷暴数据集, 研究了该区域雷暴的时空分布特征, 并进行海陆差异对比。研究结果表明, 在合理设定DBSCAN参数阈值的条件下, 基于WWLLN闪电聚类的雷暴与天气雷达观测在时空分布和过程演变上具有一致性。西北太平洋区域的日均雷暴数为3 869, 雷暴的闪电密集区平均面积为557.91km2, 平均延展尺度为31.99 km, 平均闪电频次为33 str/(h·thu)。在空间分布上, 东南亚沿海地区与热带岛屿的雷暴活动最强, 南海的雷暴活动强于深海。距离海岸线越近的海域其雷暴面积越大。在季节分布上, 整个区域雷暴活动在夏季(6—8月)达到全年最强, 南海雷暴活动6月达到峰值, 而日本东部近海海域的雷暴活动则在冬季达到最强。我国内陆南方地区雷暴3月开始显著增多, 雷暴平均面积达到最大, 但雷暴平均闪电频次5月才达到峰值。在日变化方面, 陆地雷暴活动呈现典型的单峰型特征, 大部分雷暴发生在午后及傍晚。海洋雷暴日变化则较为平缓, 南海具有其独特的雷暴日变化特征。   相似文献   

9.
陈宇  王蕾  杨超  张莹 《气象科学》2017,37(6):832-838
本文利用辽宁省大连市2007年1月—2011年12月连续5 a的闪电监测数据,分析了大连地区闪电频数和强度的时空分布特征,并基于雷电频次和强度构建雷电危险度综合指数预测模型。研究结果表明,大连地区闪电高发期集中在6—8月,该段时间内闪电数超过全年闪电总数的80%;6、7月雷电明显集中于午后和夜间,而从8月开始雷电发生时间向凌晨时段集中,午后明显减少,夜间闪电次数略高于白天。大连地区大部分区域的平均雷击密度值低于10次·km-2,两个极大值中心位于长海县和普兰店市;大连地区大部分区域的平均雷击强度值介于5~30 k A之间,平均雷击强度的极大值中心位于主城区、金州区、瓦房店市西部及庄河市东部,最大可达98 k A。本文依据模糊函数法综合闪电频次与雷击电流,构造雷电危险度综合指数预测模型,并以2011年4月14日雷击灾害为例,预报雷电危险度等级为4级。该模型可对大连地区的雷电危险度等级进行预测并发布预警,更加直观、方便、高效地为公众提供气象服务信息。  相似文献   

10.
《大气与海洋》2013,51(4):443-454
Abstract

Using data from Hydro‐Québec, a spatio‐temporal summary study of cloud‐to‐ground lightning in Quebec (45°‐53 °N; 81 °‐65° W) for the 1996–2005 period was performed on a sample of close to four million lightning strokes. The annual number of lightning strokes and the ratio of negative to positive lightning (76:24) do not differ significantly from one year to the next. Despite the fact that there was an average of 239 lightning days per year, the lightning strokes were concentrated over a period of a few days. Between 1996 and 2005, 50% of the total annual lightning was distributed over 11 days, 75% over 25 days, and 90% over 44 days. Overall, the peak in the average annual cycle occurs on 15 July. Between 1996 and 2002, the number of days with at least one positive lightning stroke remained higher than the number of days with at least one negative lightning stroke. This tendency reversed from 2003 until 2005. Most of the annual lightning occurred during June, July and August. The average minimum number of lightning strokes per hour occurred at approximately 14:00 utc, and the maximum number occurred at 21:00 UTC. The ratio of positive lightning to negative remained constant throughout the day.

Both the density and the number of lightning days were mapped for the 10‐year period. The spatial distribution of lightning indicates a higher density in the southern and western parts of the study area with an average of 0.52 to 1.27 lightning strokes km?2 yr?1. The St. Lawrence Lowlands ecoregion receives the greatest number of lightning strokes annually (from 0.73 to 1.27 km?2 yr?1). The spatial distribution of the number of lightning days per year is approximately the same as that of the density. The same two gradient axes can be observed crossing from north to south and from east to west. The spatial distribution of the percentage of positive lightning strokes varies considerably in the area, ranging from 0 to 65% depending on the location. While the St. Lawrence Lowlands ecoregion has the highest density and highest number of lightning days, it also has the lowest number of positive strokes. Additional research must be done to establish a correlation between our results and environmental variables, such as topography and vegetation, as well as the spatial variations of lightning and instances of forest fire.  相似文献   

11.
雷州半岛盛夏闪电活动特征及其与降水的联系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用雷州半岛2007年7、8月常规地面气象观测资料和闪电定位资料,分析了闪电活动与24 h降水量及雨强的关系,结果表明:雷州半岛盛夏地闪频数的最大值中心在其东侧海面上,地闪高发带沿海岸线呈南北向分布;地闪频次存在明显的日变化特征,13:00~18:00为闪电高发时段;无闪电时,有41.3%的降水事件24 h降水量≤1 mm,61.5%的降水事件雨强≤1 mm·h-1;有闪电时相应的事件概率分别为25.9%和37.7%;24 h降水量>30 mm的事件大多发生在有闪电的情况下,无闪电时极少发生;雨强概率分布的日变化特征不明显;有闪电活动时,雨强均值变化幅度加大.  相似文献   

12.
《大气与海洋》2013,51(3):177-194
Abstract

Flash density and occurrence features for more than 23.5 million cloud‐to‐ground (CG) lightning flashes detected by the Canadian Lightning Detection Network (CLDN) from 1999 to 2008 are analyzed on 20 × 20 km equal area squares over Canada. This study was done to update an analysis performed in 2002 with just three years of data. Flashes were detected throughout the year, and distinct geographic differences in flash density and lightning occurrence were observed. The shape and locations of large scale patterns of lightning occurrence remained almost the same, although some details were different. Flash density maxima occurred at the same locations as found previously: the Swan Hills and Foothills of Alberta, southeastern Saskatchewan, southwestern Manitoba and southwestern Ontario. A region of greater lightning occurrence but relatively low flash density south of Nova Scotia occurred at the same location as reported previously. New areas of higher flash density occurred along the US border with northwestern Ontario and southern Quebec. These appear to be northward extensions of higher flash density seen in the previous study. The greatest average CG flash density was 2.8 flash km?2 y?1 in southwestern Ontario, where the greatest single‐year flash density (10.3 flash km?2 y?1) also occurred. Prominent flash density minima occurred east of the Continental Divide in Alberta and over the Niagara Escarpment in southern Ontario.

Lightning activity is seen to be highly influenced by the length of the season, proximity to cold water bodies and elevation. The diurnal heating and cooling cycle exerted the main control over lightning occurrence over most land areas; however, storm translation and transient dynamic features complicated the time pattern of lightning production. A large portion of the southern Prairie Provinces experienced more than 50% of flashes between 22:30 and 10:30 local solar time. The duration of lightning over a 20 × 20 km square at most locations in Canada is 5–10 h y?1, although the duration exceeded 15 h y?1 over extreme southwestern Ontario. Lightning occurred on 15–30 days each year, on average, over most of the interior of the country. The greatest number of days with lightning in a single year was 47 in the Alberta foothills and 50 in southwestern Ontario. Beginning and ending dates of the lightning season show that the season length decreases from north to south; however, there are considerable east‐west differences between regions. The season is nearly year‐round in the Pacific coastal region, southern Nova Scotia, southern Newfoundland and offshore.  相似文献   

13.
Summary The diurnal variations of water vapor in central Japan were investigated with GPS-derived precipitable water (PWV) and surface meteorological data as classified to three kinds of locations. Twenty-five clear days in central Japan in August 2000 were investigated to clarify the role of water vapor in the nocturnal maximum in the diurnal cycle of convective rainfall. The diurnal variations of PWV and some meteorological factors were composite during the selected days at 6 stations. The PWV shows a clear diurnal cycle with the amplitude of 3.4 mm to 8.8 mm and changes little during the period from the morning to noon. The daily amplitude of PWV is the largest in basin and smallest in plain although mean of PWV keeps high value in plain. A typical feature of the diurnal variation in central Japan is a maximum appearing in the evening. The time of maximum is from 1800 LST to 2000 LST, and minima appears at noon nearly in mountainous area and basin, while in early morning in plain. The diurnal maximum of PWV appears earlier in mountainous region than in plain. A diurnal cycle of specific humidity can be observed in all locations, and the amplitude in mountainous region is especially large compared with that in basin and plain. It is important to notice that there are remarkable differences in specific humidity among the six stations. The results suggest that the diurnal variation of PWV seems to be strongly affected by the local thermal circulations generated by the topography around these stations. The moisture transport causes the differences in phase of the diurnal cycle of PWV between different locations as well as the phase difference in precipitation. A very clear diurnal variation in surface air temperature is similar to that of solar radiation, with a minimum in the morning and a maximum in early afternoon. Maximum of surface wind speed are corresponded to peak of precipitation very well. It can be concluded that the amplitude of solar radiation increases with altitude as opposed to the situation of PWV generally. The precipitation observed frequently in the evening also shows a similar diurnal variation to that of the PWV, indicating the peak of precipitation appearing in late afternoon or in the evening over central Japan. Meanwhile the PWV reaches its nocturnal maximum. There is a good relationship between the diurnal cycle of observed precipitation and that of the PWV. Authors’ addressess: Guoping Li, Department of Atmospheric Sciences, Chengdu University of Information Technology, #3 Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, P.R. China; Dingfa Huang, Department of Surveying Engineering, Southwest Jiaotong University, Chengdu, China; Fujio Kimura, Tomonori Sato, Institute of Geoscience, University of Tsukuba, Tsukuba, Japan.  相似文献   

14.
The present study focuses on spatial patterns of diurnal variability in winter precipitation across the Indian subcontinent. Hourly precipitation data during the months of January and February from 1980 to 2002 were procured for 80 stations spread across the subcontinent. The methodology consisted of calculation of the first harmonics by harmonic analysis for three variables that included frequency, total amount, and intensity of precipitation events. There were substantial variations in the strength of the diurnal cycle prevailing over the subcontinent, with most of the peninsular region and eastern part of the northern Gangetic Plain showing relatively stronger diurnal cycles. The variance explained by the first harmonic was significant at the 90% confidence level for larger parts of the peninsular region and northern plains. The weakest patterns were observed in the interior of the continent over central India. The times of maximum for hourly frequency, total amount, and intensity of precipitation were predominantly during the latter half of the 24–hour period, during late evening hours to just before sunrise hours. This was due to the enhanced warm front lifting during the late night to early morning hours as a result of nighttime inversions in the warm sector. Further, along the foothills of the Himalayas, the times of maximum were observed during predawn hours just before sunrise, caused by the downslope movement of katabatic winds and their convergence with the cyclonic storms in the low-lying areas, leading to enhanced precipitation. Along the west coast, the times of maxima were also concentrated in the midnight to early-morning hours due to the convergence of inland moving seas breeze fronts with the northeast trades.  相似文献   

15.
一种新的雷电日及雷电参数统计方法   总被引:6,自引:3,他引:3  
为更好地应用雷电定位系统的自动监测数据统计雷电日及雷电参数,利用滇中地区1987~2006年49个气象站点雷电观测资料和2005~2006年闪电定位探测资料,在对比分析气象观测雷电资料与闪电定位探测雷电资料的基础上,提出了一种新的适用于自动监测雷电日的统计方法--网格法.网格法划分统计区域详细、合理,其雷电日统计值与传统气象雷电日有可比性.长期气象雷电日资料是选定网格大小的参考标尺,滇中地区取0.175°×0.175°网格统计值为其年平均雷电日,取0.3°×0.3°网格统计值为其最大雷电日.用网格法对雷电参数进行统计结果显示:滇中地区雷电日和雷电密度有显著的局地变化特征,地闪密度与闪电强度成反比关系.此结论为防雷工程设计、雷电灾害评估和雷电成因分析提供了较好的理论基础.  相似文献   

16.
广东地区雷电活动的气候分布特征   总被引:27,自引:14,他引:27  
利用地闪定向仪(DF)和时间到达法(TOA)定位技术,1997年3月~1998年6月在研究范围内共计得到404431次地闪资料.分析了地闪的雷电流强度、回击数的气候概率分布特征以及雷电参数的日变化及其空间分布的气候规律.正闪占总闪的比例仅为5.03%,正负闪密度的高值中心均在(114.E,23.N)附近.总体日变化特征明显,全天有两个高值时段,分别为00~06时和12~18时.与北方地区的雷电特征不同.结果表明雷电活动特征可以基本揭示本地区天气活动的时空分布的规律.  相似文献   

17.
利用广东省ADTD(active divectory topology diagrammer)闪电定位系统资料,分析2017-2019年江门地区地闪回击的时空分布特征.结果表明:地闪密度大值分布在江门北部及西部,中部地闪回击密度最低.正地闪回击频次占总回击频次的3.36%,负地闪回击频次占总回击频次的96.64%;月分...  相似文献   

18.
The seasonal variation of lightning flash activity over the Indian subcontinent (0°N–35°N and 60°E–100°E) is studied using the quality checked monthly lightning flash data obtained from lightning imaging sensor on board the Tropical Rainfall Measuring Mission satellite. This paper presents results of spatio-temporal variability of lightning activity over the Indian subcontinent. The study of seasonal total lightning flashes indicates that the lightning flash density values are in qualitative agreement with the convective activity observed over this region. Maximum seasonal total flash counts are observed during the monsoon season. The propagation of the inter-tropical convergence zone over this region is also confirmed. Synoptic conditions responsible for variation of lightning activity are also investigated with the help of an observed dataset. The mean monthly flash counts show a peak in the month of May, which is the month of maximum temperatures over this region. Maximum flash density (40.2 km?2 season?1) is observed during the pre-monsoon season at 25.2°N/91.6°E and the annual maximum flash density of 28.2 km?2 year?1 is observed at 33.2°N/74.6°E. The study of the inter-annual variability of flash counts exhibits bimodal nature with the first maximum in April/May and second maximum in August/September.  相似文献   

19.
《大气与海洋》2013,51(2):199-220
Abstract

Lightning activity over the Mackenzie basin has been examined for the summers of 1994 and 1995. In recent years, the lightning network operating in the Northwest Territories has detected an average of 118 K strikes per season. Positive lightning strikes (defined as lightning discharges lowering positive charge to the earth) typically comprise 12% of the total. The lightning activity during 1994 was approximately 20% below normal, while in 1995, it was 53% below normal. However, the fraction of positive lightning strikes was 25.6% during 1995. The lightning was linked to synoptic conditions favouring severe storm development, especially those tied to the diurnal cycle. As a consequence of the lightning, as well as the very dry surface conditions, record forest areas were burned. In the Northwest Territories alone, forest fires burned 3 Mha in 1994 and 2.8 Mha in 1995.  相似文献   

20.
In the present study, we use modeling experiments to investigate the impact of the diurnal cycle on the Madden-Julian Oscillation (MJO) during the Australian summer. Physical initialization and a nudging technique enable us to assimilate the observed Tropical Rainfall Measuring Mission (TRMM) rain rate and atmospheric variables from the National Centers for Environmental Prediction—National Center for Atmospheric Research Reanalysis 2 (R2) into the Florida State University Global Spectral Model (FSUGSM), resulting in a realistic simulation of the MJO. Model precipitation is also significantly improved by TRMM rain rate observation via the physical initialization. We assess the influence of the diurnal cycle on the MJO by modifying the diurnal component during the model integration. Model variables are nudged toward the daily averaged values from R2. Globally suppressing the diurnal cycle (NO_DIURNAL) exerts a strong impact on the Maritime Continent. The mean state of precipitation increases and intraseasonal variability becomes stronger over the region. It is well known that MJO weakens as it passes over the Maritime Continent. However, the MJO maintains its strength in the NO_DIURNAL experiment, and the diminution of diurnal signals during the integration does not change the propagating speed of the MJO. We suggest that diminishing the diurnal cycle in NO_DIURNAL consumes less moist static energy (MSE), which is required to trigger both diurnal and intraseasonal convection. Thus, the remaining MSE may play a major role along with larger convective instability and stronger lower level moisture convergence in intensifying the MJO over the Maritime Continent in the model simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号