首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
The first meteor radar measurements of meridional winds in the lower thermosphere (about 95 ± 5 km), along four azimuth directions: 0°, 90°E, 180° and 90°W; approximately 2° from the geographic South Pole were made during two observational campaigns: January 19, 1995-January 26, 1996, and November 21, 1996-January 27, 1997. Herein we report analyses of the measurement results, obtained during the first campaign, which cover the whole one-year period, with particular emphasis on the transient nature and seasonal behavior of the main parameters of the intradiurnal wind oscillations. To analyze the data, two complementary methods are used: the well-known periodogram (FFT) technique and the S-transform technique. The most characteristic periods of the intradiurnal oscillations are found to be rather uniformly spread between about 7 h and 12 h. All of these oscillations are westward-propagating with zonal wave number s = 1 and their usual duration is confined to several periods. During the austral winter season the oscillations with periods less than 12 h are the most intensive, while during summer season the 12-h oscillations dominate. Lamb waves and internal-gravity wave propagation, non-linear interaction of the short-period tides, excitation in situ of the short period waves may be considered as possible processes which are responsible for intradiurnal wind oscillations in the lower thermosphere over South Pole.  相似文献   

2.
Lee and mountain waves are dominant dynamic processes in the atmosphere above mountain areas. ST VHF radars had been intensively used to investigate these wave processes. These studies are summarized in this work. After discussing features of long-period quasi-stationary lee waves, attention is drawn to the frequent occurrence of freely propagating waves of shorter periods, which seem to be more common and characteristic for wave processes generated over mountainous areas. Characteristics of these waves such as their relation to the topography and background winds, the possibility of trapping by and breaking in the tropopause region and their propagation into the stratosphere is investigated. These orographically produced waves transport energy and momentum into the troposphere and stratosphere, which is considered an important contribution to the kinetic energy of the lower atmosphere. The occurrence of inertia-gravity waves in the stratosphere had been confused with lee waves, which is discussed in conclusion. Finally further questions on mountain and lee waves are drawn up, which remain to be solved and where investigations with ST radars could play a fundamental role.  相似文献   

3.
Observations of mesospheric winds over a period of four years with the partial reflection radar at Tirunelveli (8.7°N, 77.8°E), India, are presented in this study. The emphasis is on describing seasonal variabilities in mean zonal and meridional winds in the altitude region 70–98 km. The meridional winds exhibit overall transequatorial flow associated with differential heating in the Northern and Southern Hemispheres. At lower altitudes (70–80 km) the mean zonal winds reveal easterly flow during summer and westerly flow during winter, as expected from a circulation driven by solar forcing. In the higher altitude regime (80–98 km) and at all altitudes during equinox periods, the mean zonal flow is subjected to the semi-annual oscillation (SAO). The interannual variability detected in the occurrence of SAO over Tirunelveli has also been observed in the data sets obtained from the recent UARS satellite mission. Harmonic analysis results over a period of two years indicate the presence of long-period oscillations in the mean zonal wind at specific harmonic periods near 240, 150 and 120 days. Results presented in this study are discussed in the context of current understanding of equatorial wave propagation.  相似文献   

4.
Meteor radars located in Bulgaria and the UK have been used to simultaneously measure winds in the mesosphere/lower-thermosphere region near 42.5°N, 26.6°E and 54.5°N, 3.9°W, respectively, over the period January 1991 to June 1992. The data have been used to investigate planetary waves and diurnal and semidiurnal tidal variability over the two sites. The tidal amplitudes at each site exhibit fluctuations as large as 300% on time scales from a few days to the intra-seasonal, with most of the variability being at intra-seasonal scales. Spectral and cross-wavelet analysis reveals closely related tidal variability over the two sites, indicating that the variability occurs on spatial scales large compared to the spacing between the two radars. In some, but not all, cases, periodic variability of tidal amplitudes is associated with simultaneously present planetary waves of similar period, suggesting the variability is a consequence of non-linear interaction. Calculation of the zonal wave number of a number of large amplitude planetary waves suggests that during summer 1991 the 2-day wave had a zonal wave number of 3, but that during January/February 1991 it had a zonal wave number of 4.  相似文献   

5.
Meteor radar measurements of winds near 95 km in four azimuth directions from the geographic South Pole are analyzed to reveal characteristics of the 12-h oscillation with zonal wavenumber one (s = 1). The wind measurements are confined to the periods from 19 January 1995 through 26 January 1996 and from 21 November 1996 through 27 January 1997. The 12-h s = 1 oscillation is found to be a predominantly summertime phenomenon, and is replaced in winter by a spectrum of oscillations with periods between 6 and 11.5 h. Both summers are characterized by minimum amplitudes (5–10 ms–1) during early January and maxima (15–20 ms–1) in November and late January. For 10-day means of the 12-h oscillation, smooth evolutions of phase of order 4–6 h occur during the course of the summer. In addition, there is considerable day-to-day variability (±5–10 ms–1 in amplitude) with distinct periods (i.e., 5 days and 8 days) which suggests modulation by planetary-scale disturbances. A comparison of climatological data from Scott Base, Molodezhnaya, and Mawson stations suggests that the 12-h oscillation near 78°S is s = 1, but that at 68°S there is probably a mixture between s = 1 and other zonal wavenumber oscillations (most probably s = 2). The mechanism responsible for the existence of the 12-h s = 1 oscillation has not yet been identified. Possible origins discussed herein include in situ excitation, nonlinear interaction between the migrating semidiurnal tide and a stationary s = 1 feature, and thermal excitation in the troposphere.  相似文献   

6.
The 16-day planetary wave in the mesosphere and lower thermosphere   总被引:3,自引:0,他引:3  
A meteor radar located at Sheffield in the UK has been used to measure wind oscillations with periods in the range 10–28 days in the mesosphere/lower-thermosphere region at 53.5°N, 3.9°W from January 1990 to August 1994. The data reveal a motion field in which wave activity occurs over a range of frequencies and in episodes generally lasting for less than two months. A seasonal cycle is apparent in which the largest observed amplitudes are as high as 14 ms−1 and are observed from January to mid-April. A minimum in activity occurs in late June to early July. A second, smaller, maximum follows in late summer/autumn where amplitudes reach up to 7–10 ms−1. Considerable interannual variability is apparent but wave activity is observed in the summers of all the years examined, albeit at very small amplitudes near mid summer. This behaviour suggests that the equatorial winds in the mesopause region do not completely prevent inter-hemispheric ducting of the wave from the winter hemisphere, or that it is generated in situ.  相似文献   

7.
Observations made with the co-located Rayleigh lidar and MST radar systems at Aberystwyth (52.4°N, 4.1°W) in Wales and radiosondes from Valentia (51.9°N, 10.2°W) in Eire are used to investigate the changes in the vertical propagation of gravity waves during periods of 4 days in June 1995 and February 1993. In each month, the lidar observations show that the wave activity in the upper stratosphere and lower mesosphere changes between two pairs of days. The radar and radiosonde measurements indicate that mountain waves make no contribution to the changes in intensity. Instead, the changes seem to arise largely from the presence or absence of long-period waves with vertical wavelengths near 8 and 10 km in June and February, respectively. The influence of such waves on the vertical wavenumber spectra is examined and related to the evidence for convective instabilities provided by the temperature profiles.  相似文献   

8.
The records of VLF atmospherics over Calcutta and then over Kalyani (West Bengal) during the torrential rainfall, caused by violent monsoon and post-monsoon depressions, exhibit distinct long-period fadings both at day and night. Interesting results obtained from an analysis of round-the-clock atmospherics data and associated meteorological parameters are reported in this paper. A possible correlation between the severe meteorological activity with the solar geophysical phenomena was studied. The results are indicative of an interesting sequence of solar-terrestrial events. A tentative conclusion is reached, suggesting an origin of the fading from atmospheric gravity waves generated in the centre of activity of the depressions concerned.Currently at: Department of Physics, Serampore College, Serampore, 712 201 West Bengal  相似文献   

9.
Planetary wave activity at quasi 16-, 10- and 5-day periods has been compared at various altitudes through the middle and upper atmosphere over Halley (76°S, 27°W), Antarctica, during the austral winters of 1997–1999. Observational data from the mesosphere, E-region ionosphere and F-region ionosphere have been combined with stratospheric data from the ECMWF assimilative operational analysis. Fourier and wavelet techniques have shown that the relationship between planetary wave activity at different altitudes is complex and during the winter eastward wind regime does not conform to a simple combination of vertical planetary wave propagation and critical filtering. Strong planetary wave activity in the stratosphere can coincide with a complete lack of wave activity at higher altitudes; conversely, there are also times when planetary wave activity in the mesosphere, E-region or F-region has no apparent link to activity in the stratosphere. The latitudinal activity pattern of stratospheric data tentatively suggests that when the stratospheric signatures are intense over a wide range of latitudes, propagation of planetary waves into the mesosphere is less likely than when the stratospheric activity is more latitudinally restricted. It is possible that, on at least one occasion, 16-day planetary wave activity in the mesosphere may have been ducted to high latitudes from the lower latitude stratosphere. The most consistent feature is that planetary wave activity in the mesosphere is almost always anti-correlated to planetary wave activity in the E-region even though the two are in close physical proximity. The oscillatory critical filtering of vertical gravity wave propagation by planetary waves and the re-generation of the planetary wave component at higher altitudes through subsequent critical filtering or breaking of the gravity waves may provide an explanation for some of these characteristics. Alternatively the nonlinear interaction between planetary waves and tides, indicated in the E-region data, may play a role.  相似文献   

10.
Averaged seasonal variations of wind perturbation intensities and vertical flux of horizontal momentum produced by internal gravity waves (IGWs) with periods 0.2/1 h and 1/6 h are studied at the altitudes 65/80 km using the MU radar measurement data from the middle and upper atmosphere during 1986/1997 at Shigaraki, Japan (35°N, 136°E). IGW intensity has maxima in winter and summer, winter values having substantial interannual variations. Mean wave momentum flux is directed to the west in winter and to the east in summer, opposite to the mean wind in the middle atmosphere. Major IGW momentum fluxes come to the mesosphere over Shigaraki from the Pacific direction in winter and continental Asia in summer.  相似文献   

11.
The zonally averaged UK Meteorological Office (UKMO) zonal mean temperature and zonal winds for the latitudes 8.75°N and 60°N are used to investigate the low-latitude dynamical response to the high latitude sudden stratospheric warming (SSW) events that occurred during winter of the years 1998–1999, 2003–2004 and 2005–2006. The UKMO zonal mean zonal winds at 60°N show a short-term reversal to westward winds in the entire upper stratosphere and lower mesosphere and the low-latitude winds (8.75°N) show enhanced eastward flow in the upper stratosphere and strong westward flow in the lower mesosphere during the major SSW events at high latitudes. The mesosphere and lower thermosphere (MLT) zonal winds acquired by medium frequency (MF) radar at Tirunelveli (8.7°N, 77.8°E) show a change of wind direction from eastward to westward several days before the onset of SSW events and these winds decelerate and weak positive (eastward) winds prevail during the SSW events. The time variation of zonal winds over Tirunelveli is nearly similar to the one reported from high latitudes, except that the latter shows intense eastward winds during the SSW events. Besides, the comparison of daily mean meridional winds over Tirunelveli with those over Collm (52°N, 15°E) show that large equatorial winds are observed over Tirunelveli during the 2005–2006 event and over Collm during the 1998–1999 events. The variable response of MLT dynamics to different SSW events may be explained by the variability of gravity waves.  相似文献   

12.
The mechanism of generation of internal gravity waves (IGW) by mesoscale turbulence in the troposphere is considered. The equations that describe the generation of waves by hydrodynamic sources of momentum, heat and mass are derived. Calculations of amplitudes, wave energy fluxes, turbulent viscosities, and accelerations of the mean flow caused by IGWs generated in the troposphere are made. A comparison of different mechanisms of turbulence production in the atmosphere by IGWs shows that the nonlinear destruction of a primary IGW into a spectrum of secondary waves may provide additional dissipation of nonsatu-rated stable waves. The mean wind increases both the effectiveness of generation and dissipation of IGWs propagating in the direction of the wind. Competition of both effects may lead to the dominance of IGWs propagating upstream at long distances from tropospheric wave sources, and to the formation of eastward wave accelerations in summer and westward accelerations in winter near the mesopause.  相似文献   

13.
In this paper, the 6.5-day planetary waves over Wuhan (30.5°N, 114.3°E) were investigated on the basis of the meteor radar measurements within 78–98 km height region during February 2002–December 2005. The observations show that 6.5-day waves have a prominent seasonal variability and have larger amplitudes at equinoxes than at solstices. We also found that intensive waves occur mostly between 84 and 98 km, and the zonal components of 6.5-day waves are a little larger than its meridional components on average. The main periods of 6.5-day waves are near 6–7 days in spring/winter season and 5–7 days (even extend to 8 days) in autumn months. However, these waves exhibit a downward progression when the amplitude is large. Robust wave events occur basically in eastward background winds. During the 4-year interval, the strongest waves were found in Apri–-May of 2003 and 2004.  相似文献   

14.
During the summer of 1997 investigations into the nature of polar mesosphere summer echoes (PMSE) were conducted using the European incoherent scatter (EISCAT) VHF radar in Norway. The radar was operated in a frequency domain interferometry (FDI) mode over a period of two weeks to study the frequency coherence of the returned radar signals. The operating frequencies of the radar were 224.0 and 224.6 MHz. We present the first results from the experiment by discussing two 4-h intervals of data collected over two consecutive nights. During the first of the two days an enhancement of the FDI coherence, which indicates the presence of distinct scattering layers, was found to follow the lower boundary of the PMSE. Indeed, it is not unusual to observe that the coherence values are peaked around the heights corresponding to both the lower- and upper-most boundaries of the PMSE layer and sublayers. A Kelvin-Helmholtz mechanism is offered as one possible explanation for the layering structure. Additionally, our analysis using range-time-pseudocolor plots of signal-to-noise ratios, spectrograms of Doppler velocity, and estimates of the positions of individual scattering layers is shown to be consistent with the proposition that upwardly propagating gravity waves can become steepened near the mesopause.  相似文献   

15.
Continuous wind observations allow detailed investigations of the upper mesosphere circulation in winter and its coupling with the lower atmosphere. During winter the mesospheric/lower thermospheric wind field is characterized by a strong variability. Causes of this behaviour are planetary wave activity and related stratospheric warming events. Reversals of the dominating eastward directed mean zonal winds in winter to summerly westward directed winds are often observed in connection with stratospheric warmings. In particular, the amplitude and duration of these wind reversals are closely related to disturbances of the dynamical regime of the upper stratosphere.The occurrence of long-period wind oscillations and wind reversals in the mesosphere and lower thermosphere in relation to planetary wave activity and circulation disturbances in the stratosphere has been studied for 12 winters covering the years 1989–2000 on the basis of MF radar wind observations at Juliusruh (55°N, since 1989) and Andenes (69°N, since 1998). Mesospheric wind oscillations with long-periods between 10 and 18 days are observed during the presence of enhanced planetary wave activity in the stratosphere and are combined with a reversal of the meridional temperature gradient of the stratosphere or with upper stratospheric warmings.  相似文献   

16.
Spectral analysis of Tirunelveli (8.7°N, 77.8°E) MF radar winds for the year 2007 indicate the presence of long-period Kelvin waves with periods ~23 and ~16 days in the low-latitude mesosphere during Indian summer monsoon months. The dominant presence of these slow-phase speed waves at mesospheric altitudes motivated us to investigate their origin and vertical propagation characteristics. Space-time Fourier analysis of NCEP winds and OLR show the presence of these periodicities with zonal wavenumber 1 indicating that tropical convection is the potential source for these waves and westward phase of stratospheric QBO winds might have favoured these waves to reach the mesosphere.  相似文献   

17.
On the basis of MEM spectrum analysis, the main planetary scale fluctuations formed in the lower ionosphere are studied over a period of 3–25 days during the CRISTA campaign (October-November 1994). Three dominant period bands are found: 3–5, 6–8 and 15–23 (mainly 16–18) days. For 7–8 and 16–18 day fluctuations, propagation was eastward with wave numbers K = 3 and K = 1, respectively. The magnitude of planetary wave activity in the mid-latitudes of the Northern Hemisphere during the CRISTA campaign seems to be fairly consistent with the expected undisturbed normal/climatological state of the atmosphere at altitudes of 80–100 km.  相似文献   

18.
Behavior of semidiurnal tides in the north and south polar MLT regions simulated by Middle Atmosphere Circulation Model at Kyushu University is described. Summertime enhancement of westward propagating semidiurnal tide with zonal wavenumber s=1 is found, which is consistent with the observed result at the South Pole (Ann. Geophys. 16 (1998) 828). Additional numerical simulations show that the non-migrating semidiurnal tide is mainly generated by the nonlinear interactions between stationary planetary waves with zonal wavenumber s=1 and the migrating semidiurnal tide in the stratosphere and mesosphere as suggested by Forbes et al. (Geophys. Res. Lett. 22(23) (1995) 3247).  相似文献   

19.
The EISCAT VHF radar (69.4°N, 19.1°E) has been used to record vertical winds at mesopause heights on a total of 31 days between June 1990 and January 1993. The data reveal a motion field dominated by quasi-monochromatic gravity waves with representative apparent periods of 30–40 min, amplitudes of up to 2.5 m s–1 and large vertical wavelength. In some instances waves appear to be ducted. Vertical profiles of the vertical-velocity variance display a variety of forms, with little indication of systematic wave growth with height. Daily mean variance profiles evaluated for consecutive days of recording show that the general shape of the variance profiles persists over several days. The mean variance evaluated over a 10 km height range has values from 1.2 m2s–2 to 6.5 m2s–2 and suggests a semi-annual seasonal cycle with equinoctial minima and solsticial maxima. The mean vertical wavenumber spectrum evaluated at heights up to 86 km has a slope (spectral index) of -1.36 ± 0.2, consistent with observations at lower heights but disagreeing with the predictions of a number of saturation theories advanced to explain gravity-wave spectra. The spectral slopes evaluated for individual days have a range of values, and steeper slopes are observed in summer than in winter. The spectra also appear to be generally steeper on days with lower mean vertical-velocity variance.  相似文献   

20.
The general circulation of the middle atmosphere is simulated by means of a three-dimensional primitive equation model which covers from the south pole to the north pole but is limited to a ten-degree sector in the latitudinal direction; cyclic conditions are imposed at the east—west lateral boundaries. The model is capable of explicitly representing internal gravity waves of zonal wavelength greater than a few hundred kilometers with the use of a one-degree mesh, but planetary-scale waves were excluded. No parameterization is employed for subgrid-scale eddy viscosity (or diffusivity).With the assumption of a simple external-heating function corresponding to solstice conditions, a time integration was performed for about thirty days from the motionless state. During the whole period, random forcings were imposed on each grid of the lowest level in order to generate small-scale upwardly propagating internal gravity waves.The experiment has shown that small-scale waves were indeed excited, propagated upward, broke up near the mesopause, and greatly changed the thermally induced zonal mean motion and temperature fields in the upper mesosphere and lower thermosphere. As a result, important features of the general circulation at those levels, such as reversals of the zonal motion and the latitudinal gradient of zonal mean temperature were reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号