首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the variability of seismic activity observed in the case of different geological zones of peninsular India (10°N–26°N; 68°E–90°E) based on earthquake catalog between the period 1842 and 2002 and estimates earthquake hazard for the region. With compilation of earthquake catalog in terms of moment magnitude and establishing broad completeness criteria, we derive the seismicity parameters for each geologic zone of peninsular India using maximum likelihood procedure. The estimated parameters provide the basis for understanding the historical seismicity associated with different geological zones of peninsular India and also provide important inputs for future seismic hazard estimation studies in the region. Based on present investigation, it is clear that earthquake recurrence activity in various geologic zones of peninsular India is distinct and varies considerably between its cratonic and rifting zones. The study identifies the likely hazards due to the possibility of moderate to large earthquakes in peninsular India and also presents the influence of spatial rate variation in the seismic activity of this region. This paper presents the influence of source zone characterization and recurrence rate variation pattern on the maximum earthquake magnitude estimation. The results presented in the paper provide a useful basis for probabilistic seismic hazard studies and microzonation studies in peninsular India.  相似文献   

2.
The Himalayas has experienced varying rates of earthquake occurrence in the past in its seismo-tectonically distinguished segments which may be attributed to different physical processes of accumulation of stress and its release, and due diligence is required for its inclusion for working out the seismic hazard. The present paper intends to revisit the various earthquake occurrence models applied to Himalayas and examines it in the light of recent damaging earthquakes in Himalayan belt. Due to discordant seismicity of Himalayas, three types of regions have been considered to estimate larger return period events. The regions selected are (1) the North-West Himalayan Fold and Thrust Belt which is seismically very active, (2) the Garhwal Himalaya which has never experienced large earthquake although sufficient stress exists and (3) the Nepal region which is very seismically active region due to unlocked rupture and frequently experienced large earthquake events. The seismicity parameters have been revisited using two earthquake recurrence models namely constant seismicity and constant moment release. For constant moment release model, the strain rates have been derived from global strain rate model and are converted into seismic moment of earthquake events considering the geometry of the finite source and the rates being consumed fully by the contemporary seismicity. Probability of earthquake occurrence with time has been estimated for each region using both models and compared assuming Poissonian distribution. The results show that seismicity for North-West region is observed to be relatively less when estimated using constant seismicity model which implies that either the occupied accumulated stress is not being unconfined in the form of earthquakes or the compiled earthquake catalogue is insufficient. Similar trend has been observed for seismic gap area but with lesser difference reported from both methods. However, for the Nepal region, the estimated seismicity by the two methods has been found to be relatively less when estimated using constant moment release model which implies that in the Nepal region, accumulated strain is releasing in the form of large earthquake occurrence event. The partial release in second event of May 2015 of similar size shows that the physical process is trying to release the energy with large earthquake event. If it would have been in other regions like that of seismic gap region, the fault may not have released the energy and may be inviting even bigger event in future. It is, therefore, necessary to look into the seismicity from strain rates also for its due interpretation in terms of predicting the seismic hazard in various segments of Himalayas.  相似文献   

3.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

4.
Estimation of seismic hazard in Gujarat region, India   总被引:1,自引:1,他引:0  
The seismic hazard in the Gujarat region has been evaluated. The scenario hazard maps showing the spatial distribution of various parameters like peak ground acceleration, characteristics site frequency and spectral acceleration for different periods have been presented. These parameters have been extracted from the simulated earthquake strong ground motions. The expected damage to buildings from future large earthquakes in Gujarat region has been estimated. It has been observed that the seismic hazard of Kachchh region is more in comparison with Saurashtra and mainland. All the cities of Kachchh can expect peak acceleration in excess of 500?cm/s2 at surface in case of future large earthquakes from major faults in Kachchh region. The cities of Saurashtra can expect accelerations of less than 200?cm/s2 at surface. The mainland Gujarat is having the lowest seismic hazard as compared with other two regions of Gujarat. The expected accelerations are less than 50?cm/s2 at most of the places. The single- and double-story buildings in Kachchh region are at highest risk as they can expect large accelerations corresponding to natural periods of such small structures. Such structures are relatively safe in mainland region. The buildings of 3?C4 stories and tall structures that exist mostly in cities of Saurashtra and mainland can expect accelerations in excess of 100?cm/s2 during a large earthquake in Kachchh region. It has been found that a total of 0.11 million buildings in Rajkot taluka of Saurashtra are vulnerable to total damage. In Kachchh region, 0.37 million buildings are vulnerable. Most vulnerable talukas are Bhuj, Anjar, Rapar, Bhachau, and Mandvi in Kachchh district and Rajkot, Junagadh, Jamnagar, Surendernagar and Porbandar in Saurashtra. In mainland region, buildings in Bharuch taluka are more vulnerable due to proximity to active Narmada-Son geo-fracture. The scenario hazard maps presented in this study for moderate as well as large earthquakes in the region may be used to augment the information available in the probabilistic seismic hazard maps of the region.  相似文献   

5.
东南亚地区是“21世纪海上丝绸之路”(以下简称“海洋丝路”)的重要组成部分,该区历史上曾发生十余次巨大地震,地震及其次生地质灾害是威胁东南亚地区经济社会发展和国际合作的主要自然灾害。系统梳理该区地震活动的时空分布特征及评估未来灾害风险格局,对于推进“一带一路”倡议实施及区域经济社会可持续发展具有重要意义。文章基于东南亚地区1900年以来M≥5地震的时空分布统计分析和地震b值计算,揭示出该区的地震活动在时间上表现出活跃期与平静期交替变化的特征;空间上表现出明显的聚集效应,成丛性强且主要集中在5个地震统计区内,其中印尼—马来多岛弧盆系地震区和菲律宾群岛地震区的地震活动最为活跃。总体而言,东南亚5个地震区的b值偏低,在0.42~0.91之间。该区内的地震b值也存在时空差异,受大地震事件、俯冲带年龄、活动断裂带和震源深度等众多因素影响,但主控因素在不同区域有所不同。地震b值时空变化特征对区域地震活动预测具有启示作用。上述认识为推进“海洋丝路”工程建设和“一带一路”防灾减灾对策提供了科学支撑。  相似文献   

6.
A general overview of some of the problems involved in earthquake catalogue handling is given as part of the works carried out into the ESC/SC8-TERESA project related with the seismic hazard assessment in two selected test areas: Sannio-Matese in Italy and the northern Rhine region (BGN). Furthermore, the necessary input data to be used in the calculation of seismic hazard has been obtained, including earthquake source zones and their seismic hazard parameters.The importance is pointed out of detailed analysis of seismic catalogues, mainly in relation to the use of aftershock information, the historical records of the region, and the possible temporal and spatial variation of seismicity, which could have an important influence on short-term hazard assessment.  相似文献   

7.
Quantification of seismic activity is one of the most challenging problems faced by earthquake engineers in probabilistic seismic hazard analysis. Currently, this problem has been attempted using empirical approaches which are based on the regional earthquake recurrence relations from the available earthquake catalogue. However, at a specified site of engineering interest, these empirical models are associated with large number of uncertainties due to lack of sufficient data. Due to these uncertainties, engineers need to develop mechanistic models to quantify seismic activity. A wide range of techniques for modeling continental plates provides useful insights on the mechanics of plates and their seismic activity. Among the different continental plates, the Indian plate experiences diffused seismicity. In India, although Himalaya is regarded as a plate boundary and active region, the seismicity database indicates that there are other regions in the Indian shield reporting sporadic seismic activity. It is expected that mechanistic models of Indian plate, based on finite element method, simulate stress fields that quantify the seismic potential of active regions in India. This article explores the development of a finite element model for Indian plate by observing the simulated stress field for various boundary conditions, geological and rheological conditions. The study observes that the magnitude and direction of stresses in the plate is sensitive to these conditions. The numerical analysis of the models shows that the simulated stress field represents the active seismic zones in India.  相似文献   

8.
In estimating the likelihood of an earthquake hazard for a seismically active region, information on the geometry of the potential source is important in quantifying the seismic hazard. The damage from an earthquake varies spatially and is governed by the fault geometry and lithology. As earthquake damage is amplified by guided seismic waves along fault zones, it is important to delineate the disposition of the fault zones by precisely determined hypocentral parameters. We used the double difference (DD) algorithm to relocate earthquakes in the Koyna-Warna seismic zone (KWSZ) region, with the P- and S-wave catalog data from relative arrival time pairs constituting the input. A significant improvement in the hypocentral estimates was achieved, with the epicentral errors <30 m and focal depth errors <75 m i.e. errors have been significantly reduced by an order of magnitude from the parameters determined by HYPO71. The earthquake activity defines three different fault segments. The seismogenic volume is shallower in the south by 3 km, with seismicity in the north extending to a depth of 11 km while in the south the deepest seismicity observed is at a depth of 8 km. By resolving the structure of seismicity in greater detail, we address the salient issues related to the seismotectonics of this region.  相似文献   

9.
The Himalayas are one of very active seismic regions in the world where devastating earthquakes of 1803 Bihar–Nepal, 1897 Shillong, 1905 Kangra, 1934 Bihar–Nepal, 1950 Assam and 2011 Sikkim were reported. Several researchers highlighted central seismic gap based on the stress accumulation in central part of Himalaya and the non-occurrence of earthquake between 1905 Kangra and 1934 Bihar–Nepal. The region has potential of producing great seismic event in the near future. As a result of this seismic gap, all regions which fall adjacent to the active Himalayan region are under high possible seismic hazard due to future earthquakes in the Himalayan region. In this study, the study area of the Lucknow urban centre which lies within 350 km from the central seismic gap has been considered for detailed assessment of seismic hazard. The city of Lucknow also lies close to Lucknow–Faizabad fault having a seismic gap of 350 years. Considering the possible seismic gap in the Himalayan region and also the seismic gap in Lucknow–Faizabad fault, the seismic hazard of Lucknow has been studied based on deterministic and the probabilistic seismic hazard analysis. Results obtained show that the northern and western parts of Lucknow are found to have a peak ground acceleration of 0.11–0.13 g, which is 1.6- to 2.0-fold higher than the seismic hazard compared to the other parts of Lucknow.  相似文献   

10.
Seismicity of Gujarat   总被引:2,自引:2,他引:0  
Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M????6 in a region having three devastating earthquakes that occurred during 1819 (M w7.8), 1956 (M w6.0) and 2001 (M w7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M????6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6.  相似文献   

11.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

12.
A seismic source model is developed for the entire Arabian Plate, which has been affected by a number of earthquakes in the past and in recent times. Delineation and characterization of the sources responsible for these seismic activities are crucial inputs for any seismic hazard study. Available earthquake data and installation of local seismic networks in most of the Arabian Plate countries made it feasible to delineate the seismic sources that have a hazardous potential on the region. Boundaries of the seismic zones are essentially identified based upon the seismicity, available data on active faults and their potential to generate effective earthquakes, prevailing focal mechanism, available geophysical maps, and the volcanic activity in the Arabian Shield. Variations in the characteristics given by the above datasets provide the bases for delineating individual seismic zones. The present model consists of 57 seismic zones extending along the Makran Subduction Zone, Zagros Fold-Thrust Belt, Eastern Anatolian Fault, Aqaba-Dead Sea Fault, Red Sea, Gulf of Aden, Owen Fracture Zone, Arabian Intraplate, and a background seismic zone, which models the floating seismicity that is unrelated to any of the distinctly identified seismic zones. The features of the newly developed model make the seismic hazard results likely be more realistic.  相似文献   

13.
Generally the seismic hazard of an area of interest is considered independent of time. However, its seismic risk or vulnerability, respectively, increases with the population and developing state of economy of the area. Therefore, many areas of moderate seismic hazard gain increasing importance with respect to seismic hazard and risk analysis. However, these areas mostly have a weak earthquake database, i.e., they are characterised by relative low seismicity and uncertain information concerning historical earthquakes. In a case study for Eastern Thuringia (Germany), acting as example for similar places in the world, seismic hazard is estimated using the probabilistic approach. Because of the lack of earthquakes occurring in the recent past, mainly historical earthquakes have to be used. But for these the actual earthquake sources or active faults, needed for the analysis, are imprecisely known. Therefore, the earthquake locations are represented by areal sources, a common practice. The definition of these sources is performed carefully, because their geometrical shape and size (apart from the earthquake occurrence model) influence the results significantly. Using analysis tools such as density maps of earthquake epicentres, seismic strain and energy release support this. Oversizing of areal sources leads to underestimation of seismic hazard and should therefore be avoided. Large location errors of historical earthquakes on the other hand are represented by several alternative areal sources with final superimposition of the different results. In a very similar way information known from macroseismic observations interpreted as source rather than as site effects are taken into account in order to achieve a seismic hazard assessment as realistic as possible. In very local cases the meaning of source effects exceeds those of site effects very likely. The influence of attenuation parameter variations on the result of estimated local seismic hazard is relatively low. Generally, the results obtained by the seismic hazard assessment coincide well with macroseismic observations from the thoroughly investigated largest earthquake in the region.  相似文献   

14.
Areas of low strain rate are typically characterized by low to moderate seismicity. The earthquake catalogs for these regions do not usually include large earthquakes because of their long recurrence periods. In cases where the recurrence period of large earthquakes is much longer than the catalog time span, probabilistic seismic hazard is underestimated. The information provided by geological and paleo-seismological studies can potentially improve seismic hazard estimation through renewal models, which assume characteristic earthquakes. In this work, we compare the differences produced when active faults in the northwestern margin of the València trough are introduced in hazard analysis. The differences between the models demonstrate that the introduction of faults in zones characterized by low seismic activity can give rise to significant changes in the hazard values and location. The earthquake and fault seismic parameters (recurrence interval, segmentation or fault length that controls the maximum magnitude earthquake and time elapsed since the last event or Te) were studied to ascertain their effect on the final hazard results. The most critical parameter is the recurrence interval, where shorter recurrences produce higher hazard values. The next most important parameter is the fault segmentation. Higher hazard values are obtained when the fault has segments capable of producing big earthquakes. Finally, the least critical parameter is the time elapsed since the last event (Te), when longer Te produces higher hazard values.  相似文献   

15.
This work involves updating the evaluation of seismic hazard in Northeast Algeria by a probabilistic approach. This reassessment attempts to resolve inconsistencies between seismic zoning in regional building codes and is further motivated by the need to refine the input data that are used to evaluate seismic hazard scenarios. We adopted a seismotectonic model that accounts for differences in interpretations of regional seismicity. We then performed a probabilistic assessment of regional seismic hazard in Northeast Algeria. Based on a homogeneous earthquake catalog and geological and seismotectonic data gathered in the first part of the study, a seismotectonic zoning map was created and seven risk areas were identified. For each area, peak ground acceleration hazard maps were produced. Details of the calculations are provided, including hazard curves at periods of 0.1, 0.2, 0.33, 0.5, 1.0, and 2.0 s and uniform hazard spectra at urban locations in the area, including Sétif, Constantine, Kherrata, Bejaia, and Jijel.  相似文献   

16.
A probabilistic seismic hazard assessment at Kancheepuram in Southern India was carried out with the scope of defining the seismic input for the vulnerability assessment of historical and monumental structures at the site, in terms of horizontal Uniform Hazard Spectra and a suite of spectrum-compatible natural accelerograms to perform time-history analysis. The standard Cornell?CMcGuire and a zone-free approach have been used for hazard computations after the compilation of a composite earthquake catalogue for Kancheepuram. Epistemic uncertainty in the seismic hazard was addressed within a logic-tree framework. Deaggregation of the seismic hazard for the peak ground acceleration shows low seismicity at Kancheepuram controlled by weak-to-moderate earthquakes with sources located at short distances from the archaeological site. Suites of natural accelerograms recorded on rock have been selected by imposing a custom-defined compatibility criterion with the probabilistic spectra. The site of Kancheepuram is characterized by a seismicity controlled by weak-to-moderate earthquakes with sources at short distances from the site, the PGA expected for 475- and 2,475-year return period are, respectively, 0.075 and 0.132?g. The Indian code-defined spectra (DBE and MCE) tend to underestimate spectral ordinates at low periods. On the other hand, the PGA are comparable and the spectral ordinates for longer periods from the probabilistic study are significantly lower.  相似文献   

17.
Latian dam is located in the North East of Tehran in Elburz Mountain. It falls in the category of large dams according to the International Committee on Large Dams (ICOLD). It was constructed in 1967 for agricultural purposes, drinking water, and power generation. Producing triggered earthquakes may be a consequent result of dam construction. In this paper, the complete seismic statistics of the region from 1996 onwards has been studied to understand the seismic condition of Latain region. For this purpose, frequency of earthquakes within a radius of 30/60 km around the dam is studied considering its relationship with the reservoir volume variation. Using Gutenberg-Richter rule, parameter b of the region was determined within the same region. The results of this study show the existence of triggered seismicity around the reservoir of Latian dam. Considering the tectonic-geological condition of the region, the existence of triggered earthquakes may create landslides in the reservoir and around it.  相似文献   

18.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

19.
Seismic hazard assessment of slow active fault zones is challenging as usually only a few decades of sparse instrumental seismic monitoring is available to characterize seismic activity. Tectonic features linked to the observed seismicity can be mapped by seismic imaging techniques and/or geomorphological and structural evidences. In this study, we investigate a seismic lineament located in the Swiss Alpine foreland, which was discussed in previous work as being related to crustal structures carrying in size the potential of a magnitude M 6 earthquake. New, low-magnitude (?2.0 ≤ ML ≤ 2.5) earthquake data are used to image the spatial and temporal distribution of seismogenic features in the target area. Quantitative and qualitative analyses are applied to the waveform dataset to better constrain earthquakes distribution and source processes. Potential tectonic features responsible for the observed seismicity are modelled based on new reinterpretations of oil industry seismic profiles and recent field data in the study area. The earthquake and tectonic datasets are then integrated in a 3D model. Spatially, the seismicity correlates over 10–15 km with a N–S oriented sub-vertical fault zone imaged in seismic profiles in the Mesozoic cover units above a major decollement on top of the mechanically more rigid basement and seen in outcrops of Tertiary series east of the city of Fribourg. Observed earthquakes cluster at shallow depth (<4 km) in the sedimentary cover. Given the spatial extend of the observed seismicity, we infer the potential of a moderate size earthquake to be generated on the lineament. However, since the existence of along strike structures in the basement cannot be excluded, a maximum M 6 earthquake cannot be ruled out. Thus, the Fribourg Lineament constitutes a non-negligible source of seismic hazard in the Swiss Alpine foreland.  相似文献   

20.
本文在研究三峡地区地震地质环境和地震活动规律的基础上,结合模拟实验研究结果划分了三峡地区潜在震源区。确定出相应的地震活动性参数。并对三峡工程三斗坪坝址进行了地震危险性分析,给出了三斗坪坝址不同期限内的地震影响烈度和峰值地面加速度的超越概率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号