首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this paper, a 2D poro-elastoplastic model for wave-induced dynamic response in an anisotropic seabed is derived analytically. The seabed is treated as a porous medium and characterized by Biot’s consolidation equations. The soil plasticity and wave non-linearity are included in the model and both the pore fluid and the soil skeleton are assumed to be compressible. The nonlinear ocean waves are respectively considered as progressive and standing waves. The previous experimental data is used to validate the proposed model. Numerical results demonstrate that the influence of nonlinear wave components should not be ignored without committing substantial error. A significant difference between progressive and standing waves is also observed for the development of residual pore pressure, as well as the distribution of liquefied zone. A detailed parametric investigation reveals that the nonlinear wave-induced seabed response is also affected significantly by cross-anisotropic soil parameters.  相似文献   

2.
Investigated in this study is the flow-induced vibration of a nonlinearly restrained curved pipe conveying fluid. The nonlinear equation of motion is derived by equilibrium of forces on microelement of the system under consideration. The spatial coordinate of the system is discretized by DQM (differential quadrature method). On the basis of the boundary conditions, the dynamic equation is solved by the Newton-Raphson iteration method. The numerical solutions reveal several complex dynamic motions for the variation of the fluid velocity parameter, such as limit cycle motion, buckling and so on. The result obtained also shows that the sub parameter regions corresponding to the several motions may change with the variation of some parameters of the curved pipe. The present study supplies a new reference for investigating the nonlinear dynamic response of some other structures.  相似文献   

3.
Risers/pipes conveying fluid are a typical kind of slender structures commonly used in marine engineering. It is of great academic significance and application value for us to evaluate and understand the vibration characteristics and nonlinear responses of these risers under the combined action of internal and external fluid flows. In this paper, the nonplanar vibrations and multi-modal responses of pinned-pinned risers in shear cross flow are numerically studied. With this objective in mind, the van der Pol wake oscillators are used to simulate the dynamical behavior of the vortex shedding in the wake. Two nonlinear equations of motion of the riser are proposed to govern the lateral responses of the riser structure. The nonplanar nonlinear equations for the riser and wake are then discretized by employing Galerkin's method and solved by using a fourth-order Runge–Kutta integration algorithm. Theoretical results show that the coupled frequencies for cross-flow (CF) and in-line (IL) motions and the corresponding coupled damping ratio could be influenced by the external and/or internal fluid velocities. Based on extensive calculations, the dynamical behavior of the riser with various internal and external flow velocities are presented in the form of bifurcation diagrams, time traces, phase portraits, oscillation trajectories and response spectrum curves. It is shown that some interesting dynamical phenomena, such as ‘lock-in’ state, ‘figure-of-eight’ trajectory and quasi-periodic oscillation, could occur in such a fluid-structure interaction system. Our results also demonstrate that the shear parameter can significantly affect the dynamic responses of the riser. When the shear parameter of the cross flow is large, multi-modal quasi-periodic responses of the riser can be excited, showing some new features undetected in the system of fluid-conveying risers in uniform cross flow.  相似文献   

4.
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water velocity can be estimated with good accuracy. In addition, the output feedback integral controller shows superior performance and robustness compared to a conventional shaft speed controller  相似文献   

5.
《Coastal Engineering》2005,52(8):655-672
This paper describes the extension of a finite difference model based on a recently derived highly accurate Boussinesq formulation to include domains having arbitrary piecewise-rectangular bottom-mounted (surface-piercing) structures. The resulting linearized system is analyzed for stability on a structurally divided domain, and it is shown that exterior corner points pose potential stability problems, as well as other numerical difficulties. These are mainly due to the discretization of high-order mixed-derivative terms near these points, where the flow is theoretically singular. Fortunately, the system is receptive to dissipation, and these problems can be overcome in practice using high-order filtering techniques. The resulting model is verified through numerical simulations involving classical linear wave diffraction around a semi-infinite breakwater, linear and nonlinear gap diffraction, and highly nonlinear deep water wave run-up on a vertical plate. These cases demonstrate the applicability of the model over a wide range of water depth and nonlinearity.  相似文献   

6.
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincaré map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using non-feedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to period-motions by adding an excitation term.  相似文献   

7.
Based on the nonlinear model of two-dimensional random sea waves, a statistical distribution of wave surface slope exact to the third order is derived by using the expansion of the characteristic function and direct calculations of each order moment. Based on the distribution of wave surface slope derived in this paper, a whitecap coverage is proposed by using the limit surface slope as a criterion of wave breaking. The whitecap coverage expressed by the model depends on three parameters which can be determined in principle by the linear wave spectrum and three kinds of wave-wave interaction.  相似文献   

8.
《Coastal Engineering》2006,53(10):845-855
This paper presents a study of wave damping over porous seabeds by using a two-dimensional numerical model. In this model, the flow outside of porous media is described by the Reynolds Averaged Navier–Stokes equations. The spatially averaged Navier–Stokes equations, in which the presence of porous media is considered by including additional inertia and nonlinear friction forces, is derived and implemented for the porous flow. Unlike the earlier models, the present model explicitly represents the flow resistance dependency on Reynolds number in order to cover wider ranges of porous flows. The numerical model is validated against available theories and experimental data. The comparison between the numerical results and the theoretical results indicates that the omission or linearization of the nonlinear resistance terms in porous flow models, which is the common practice in most of analytical models, can lead to significant errors in estimating wave damping rate. The present numerical model is used to simulate nonlinear wave interaction with porous seabeds and it is found that the numerical results compare well with the experimental data for different wave nonlinearity. The additional numerical tests are also conducted to study the effects of wavelength, seabed thickness and Reynolds number on wave damping.  相似文献   

9.
This study assesses the accuracy and the applicability of the Korteweg-de Vries(KdV) and the nonlinear Schr?dinger(NLS) equation solutions to derivation of dynamic parameters of internal solitary waves(ISWs) from satellite images. Visible band images taken by five satellite sensors with spatial resolutions from 5 m to 250 m near the Dongsha Atoll of the northern South China Sea(NSCS) are used as a baseline. From the baseline, the amplitudes of ISWs occurring from July 10 to 13, 2017 are estimate...  相似文献   

10.
An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in this paper. Starting from the basic model equations of oceanic motions, a Korteweg de Vries equation is derived to simulate the evolution of equatorial nonlinear near-inertial waves by using methods of scaling analysis and perturbation expansions under the equatorial beta plane approximation. Theoretical dynamic analysis is finished based on the obtained Korteweg de Vries equation, and the results show that the horizontal component of Coriolis parameters is of great importance to the propagation of equatorial nonlinear near-inertial solitary waves by modifying its dispersion relation and by interacting with the basic background flow.  相似文献   

11.
As known, the rolling motion characteristics, amplitudes and accelerations, greatly influence the ability of a ship to operate and survive in bad weather. On the other hand, traditional computer codes for seakeeping calculations fail the forecasting of large amplitude rolling. There is a great need of using semi-empirical damping models and coefficients. This stresses the importance of campaigns of measurements as described in the paper, to get a deeper insight into the physical-mathematical modelling of the different contributions to rolling equation.Experimental tests on nonlinear rolling in a regular beam sea of a Ro-Ro ship model have been conducted by varying both the wave steepness and the wave frequency. The use of a parameter estimation technique, based on the least squares fitting of the stationary numerical solution of the nonlinear rolling motion differential equation, allowed to obtain informations on the damping model and on the linear and nonlinear damping coefficients. These exhibit a quite strong dependence on frequency that reduces the efficiency of constant coefficients rolling equation to simulate large amplitude nonlinear rolling. The results indicate that a good quality prediction model of nonlinear rolling cannot be based on constant coefficients time domain simulations. These can infact lead to incorrect estimates of rolling amplitudes even when the parameters have been obtained through high level parameter estimation procedures based on experimental data. The analysis indicates also a marked dependence of the effective wave slope coefficient on wave amplitude. The introduction of both these dependences on the rolling equation allows to reproduce the experimental results with great accuracy even at large amplitudes.  相似文献   

12.
In this study the basic characteristics of the dynamic response and vortex shedding from an elastically mounted circular cylinder in laminar flow is numerically investigated. The Reynolds number ranges from 80 to 160, a regime that is fully laminar. The governing equations of fluid flow are cast in terms of vorticity. The two-dimensional vorticity transport equation is solved using a vortex method. Effects of important parameters on the system response and vortex shedding are investigated; these include: mass ratio, damping ratio, Reynolds number and reduced velocity. The numerical results show that a decrease in either the mass ratio or damping ratio of the system can lead to an increase in both the oscillation amplitude and the reduced velocity range over which lock-in occurs. The results also suggest that the mass-damping parameter may characterize the system response adequately, although the effect of changing mass ratio appears to be a little more profound compared to damping ratio. Vorticity contour plots suggest that the vortex shedding occurs in the 2S mode, although a wake structure similar to the C(2S) mode appears at distances 15–20 diameters downstream in the lock-in region. The simulation results are in good agreement with previously published data.  相似文献   

13.
Robust Nonlinear Path-Following Control of an AUV   总被引:3,自引:0,他引:3  
This paper develops a robust nonlinear controller that asymptotically drives the dynamic model of an autonomous underwater vehicle (AUV) onto a predefined path at a constant forward speed. A kinematic controller is first derived, and extended to cope with vehicle dynamics by resorting to backstepping and Lyapunov-based techniques. Robustness to vehicle parameter uncertainty is addressed by incorporating a hybrid parameter adaptation scheme. The resulting nonlinear adaptive control system is formally shown and it yields asymptotic convergence of the vehicle to the path. Simulations illustrate the performance of the derived controller .   相似文献   

14.
An analytical solution has been developed in this paper to quantify the flow field and the surge motion of a porous tension leg platform with an impermeable top layer induced by linear waves. The porous layer of the TLP is considered to be anisotropic but homogeneous. The nonlinear form drag in the porous layer is replaced by a linear drag according to Lorentz’s hypothesis of equivalent work. The convergence of the series solution is verified. The dependence of the flow field, the surge motion of the platform, and its resonant frequency on wave and structure properties has been studied.  相似文献   

15.
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.  相似文献   

16.
In this paper, we present a numerical procedure for solving a 2‐dimensional, compressible, and nonhydrostatic system of equations. A forward‐backward integration scheme is applied to treat high‐frequency and internal gravity waves explicitly. The numerical procedure is shown to be neutral in time as long as a Courant–Friedrichs–Lewy criterion is met. Compared to the leap‐frog‐scheme most models use, this method involves only two time steps, which requires less memory and is also free from unstable computational modes. Hence, a time‐filter is not needed. Advection and diffusion terms are calculated with a time step longer than sound‐wave related terms, so that extensive computer time can be saved. In addition, a new numerical procedure for the free‐slip bottom boundary condition is developed to avoid using inaccurate one‐sided finite difference of pressure in the surface horizontal momentum equation when the terrain effect is considered. We have demonstrated the accuracy and stability of this new model in both linear and nonlinear situations. In linear mountain wave simulations, the model results match the corresponding analytical solution very closely for all three cases presented in this paper. The analytical streamlines for uniform flow over a narrow mountain range were obtained through numerical integration of Queney's mathematical solution. It was found Queney's original diagram is not very accurate. The diagram had to be redrawn before it was used to verify our model results. For nonlinear tests, we simulated the famous 1972 Boulder windstorm and a bubble convection in an isentropic enviroment. Although there are no analytical solutions for the two nonlinear tests, the model results are shown to be very robust in terms of spatial resolution, lateral boundary conditions, and the use of the time-split scheme.  相似文献   

17.
The primary objective of the study was to experimentally explore the protection performance of the emergent vegetation on the morphological changes of a coastal zone. The experiments were conducted under both regular and irregular waves in two different wave flumes. A dimensionless number was derived to characterize the beach profile response under the protection of emergent vegetation. Accordingly, empirical relations were derived that explained the pattern exhibited by the experimental data. The list of wave parameters and beach erosion related functions were incorporated in relation to vegetation intensity in order to define coastal zone response. The relationships of these functions followed good trends with the derived dimensionless number. The findings showed that fall speed parameter is not necessarily involved whereas depth parameter is an important factor while defining the damage. The damage parameter is also considered to formulate the limits of dynamic and static stability of beach profiles under the protection of emergent vegetation.  相似文献   

18.
基于高阶边界元的三维数值波浪港池--波浪破碎的模拟   总被引:5,自引:1,他引:4  
在势流理论的框架内,采用高阶边界元方法和混合欧拉-拉格朗日法,实现了对三维波浪破碎过程的数值模拟.数值模型使用可调节时间步长的基于二阶显式泰勒展开的混合欧拉-拉格郎日时间步进来求解自由表面的演化过程.在所使用的边界元方法中,采用16节点三次滑移四边形单元来表示,这种单元在单元内具有高阶的精度同时在单元之间具有良好的连续性.给出了孤立波的传播和周期性非线性波浪沿缓坡传播的计算结果,表明数值模型具有良好的稳定性.  相似文献   

19.
Jiang  Sheng-chao  Liu  Chang-feng  Sun  Lei 《中国海洋工程》2020,34(2):279-288
Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow, the nonlinear potential flow and the viscous fluid flow models. The wave-wave interaction of the focused wave group with different frequency bands and input wave amplitudes is examined, by which the influence of free surface nonlinearity and fluid viscosity on the related phenomenon of focused wave is investigated. The significant influence of free surface nonlinearity on the characteristics of focused wave can be observed, including the increased focused wave crest, delayed focused time and downstream shift of focused position with the increase of input amplitude. It can plot the evident difference between the results of the nonlinear potential flow and linear potential flow models. However, only a little discrepancy between the nonlinear potential flow and viscous fluid flow models can be observed, implying the insignificant effect of fluid viscosity on focused wave behavior. Therefore, the nonlinear potential flow model is recommended for simulating the non-breaking focused wave problem in this study.  相似文献   

20.
In this paper, by non-dimensional analysis, it is found that finite-depth theory is more appropriate to the study of internal solitary waves (ISWs) in the South China Sea (SCS) than shallow-water theory. The 1-degree grid data of monthly mean temperature and salinity data at standard levels in the SCS are used to solve the linearized vertical eigenvalue problem. The nonlinear parameter and the wave phase speed are computed, then the nonlinear phase speed and the characteristic half-width of ISWs are calculated respectively by two different theories to investigate the difference between these two parameters in the SCS. The nonlinearity is the strongest near the continental slope of the SCS or islands where the bottom topography changes sharply, it is stronger in summer than that in winter; it increases (decreases) as pycnocline depth deepens (shallows), stratification strengthens (weakens) and pycnocline thickness thins (thickens). The nonlinear wave phase speed and the characteristic half-width are the largest in deep sea area, they then reduce peripherally in shallower water. The nonlinear wave phase speed in the SCS changes slightly with time, but the characteristic half-width changes somewhat larger with time. In most of the SCS basin, the nonlinear wave phase speed derived from shallow-water theory is very close to that derived from finite-depth theory, but the characteristic half-width derived from shallow-water theory is about 0.2–0.6 times larger than that derived from finite-depth theory. The ISW induced horizontal current velocity derived from shallow-water theory is larger than that derived from finite-depth theory. Some observed and numerical modeled ISW characteristic half-widths are compared with those derived from shallow-water and finite-depth theories, respectively. It is shown that, the characteristic half-widths derived from finite-depth theory agree better with observational and numerical modeled results than those derived from shallow-water theory in most cases, finite-depth theory is more applicable to the estimation of ISW characteristic half-widths in the northern SCS. It is also suggested that, to derive the precise ISW parameters in further study, the physical non-dimensional ratios which are related with ISW characteristic half-width, amplitude, thermocline and water depths should be calculated, so that an appropriate theory can be chosen for estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号