首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
On the parametric rolling of ships using a numerical simulation method   总被引:2,自引:0,他引:2  
B.C. Chang   《Ocean Engineering》2008,35(5-6):447-457
This paper has shown a numerical motion simulation method which can be employed to study on parametric rolling of ships in a seaway. The method takes account of the main nonlinear terms in the rolling equation which stabilize parametric rolling, including the nonlinear shape of the righting arm curve, nonlinear damping and cross coupling among all 6 degrees of freedom. For the heave, pitch, sway and yaw motions, the method uses response amplitude operators determined by means of the strip method, whereas the roll and surge motions of the ship are simulated, using nonlinear motion equations coupled with the other 4 degrees of freedom. For computing righting arms in seaways, Grim's effective wave concept is used. Using these transfer functions of effective wave together with the heave and pitch transfer functions, the mean ship immersion, its trim and the effective regular wave height are computed for every time step during the simulation. The righting arm is interpolated from tables, computed before starting the simulation, depending on these three quantities and the heel angle. The nonlinear damping moment and the effect of bilge keels are also taken into account. The numerical simulation tool has shown to be able to model the basic mechanism of parametric rolling motions. Some main characteristics of parametric rolling of ships in a seaway can be good reproduced by means of the method. Comprehensive parametric analyses on parametric rolling amplitude in regular waves have been carried out, with that the complicated parametric rolling phenomena can be understood better.  相似文献   

2.
Many researchers have studied a wide range of nonlinear equations of motion describing a ship rolling in waves. In this study, a form of nonlinear equation governing the motion of a rolling ship subjected to synchronous beam waves is suggested and solved by the generalized Duffing's method in the frequency domain. Various representations of damping and restoring terms found in the literature are investigated and their solutions are analyzed by the above-mentioned method. Comparative results of nonlinear roll responses are obtained for four distinct vessel types at resonance conditions which constitute the worst situation. The results indicate the importance of roll damping and restoring, when constructing a nonlinear roll model. An inappropriate selection of damping and restoring terms may lead to serious discrepancies with reality, especially in peak roll amplitudes.  相似文献   

3.
It is well known in the field of marine hydrodynamics that the added mass, damping and wave exciting forces are functions of frequency (Newman, 1977. Marine Hydrodynamics. MIT Press, Cambridge). Although most previous studies of nonlinear ship rolling motion have assumed that these forces do not vary with frequency, in this study the frequency dependent added mass and damping coefficients are approximated in the time domain with extended state space variables. Using numerical time simulation (integration), the extended state space model is compared to the constant coefficient model with a constant frequency forcing and the results for two constant value approximations of the added mass and damping are compared to the extended state space model with a multiple component pseudo random forcing.  相似文献   

4.
《Ocean Engineering》1999,26(3):227-240
It is well known in the field of marine hydrodynamics that the added mass, damping and wave exciting forces are functions of frequency (Newman, 1977. Marine Hydrodynamics. MIT Press, Cambridge). Although most previous studies of nonlinear ship rolling motion have assumed that these forces do not vary with frequency, in this study the frequency dependent added mass and damping coefficients are approximated in the time domain with extended state space variables. Using numerical time simulation (integration), the extended state space model is compared to the constant coefficient model with a constant frequency forcing and the results for two constant value approximations of the added mass and damping are compared to the extended state space model with a multiple component pseudo random forcing.  相似文献   

5.
Parametric rolling is one of five types of the ship stability failure modes as proposed by IMO. The periodic change of the metacentric height is often considered as the internal cause of this phenomenon. Parametric rolling is a complex nonlinear hydrodynamic problem, often accompanied by large amplitude vertical motions of ships. In recent years,the Reynolds-averaged Navier–Stokes(RANS) equation simulations for viscous flows have made great progress in the field of ship seakeeping. In this paper, the parametric rolling for the C11 containership in regular waves is studied both experimentally and numerically. In the experiments, parametric rolling amplitudes at different drafts, forward speeds and wave steepnesses are analyzed. The differences in the steady amplitudes of parametric rolling are observed for two drafts. The effect of the incident wave steepness(or wave amplitude) is also studied, and this supports previous results obtained on limits of the stability for parametric rolling. In numerical simulations, the ship motions of parametric rolling are analyzed by use of the potential-flow and viscous-flow methods. In the viscousflow method, the Reynolds-averaged Navier–Stokes equations are solved using the overset grid method. The numerical accuracies of the two methods at different wave steepnesses are also discussed.  相似文献   

6.
The prediction of ship stability during the early stages of design is very important from the point of vessel’s safety. Out of the six motions of a ship, the critical motion leading to capsize of a vessel is the rolling motion. In the present study, particular attention is paid to the performance of a ship in beam sea. The linear ship response in waves is evaluated using strip theory. Critical condition in the rolling motion of a ship is when it is subjected to synchronous beam waves. In this paper, a nonlinear approach has been tried to predict the roll response of a vessel. Various representations of damping and restoring terms found in the literature are investigated. A parametric investigation is undertaken to identify the effect of a number of key parameters like wave amplitude, wave frequency, metacentric height, etc.  相似文献   

7.
Wang  Li-yuan  Tang  You-gang  Li  Yan  Zhang  Jing-chen  Liu  Li-qin 《中国海洋工程》2020,34(2):289-298
The paper studies the parametric stochastic roll motion in the random waves. The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed. Random sea surface is treated as a narrow-band stochastic process, and the stochastic parametric excitation is studied based on the effective wave theory. The nonlinear restored arm function obtained from the numerical simulation is expressed as the approximate analytic function. By using the stochastic averaging method, the differential equation of motion is transformed into Ito's stochastic differential equation. The steady-state probability density function of roll motion is obtained, and the results are validated with the numerical simulation and model test.  相似文献   

8.
In this paper two different models for the damping moment to introduce in the rolling equation of the ship are proposed. They contain two terms, respectively linear-quadratic and linear-cubic in the angular velocity, and furthermore they foresee a non-linear term representing the dependence of the damping from the heeling angle. These models constitute a generalization of all the models up to now used in the naval literature.With the Bogoliubov-Krilov asymptotic method approximate relations, describing the decay curve of the free oscillations and the maximum roll amplitude in synchronism condition, are obtained. The analysis shows that the choice of the more realistic damping model cannot be based on the simple verification of a good fitting of the free oscillation decay curves. It is necessary to examine also the behaviour of the forced oscillations in synchronism.Finally, a plan of experiments which allows the determination of separate values for the different non-linear damping coefficients is proposed.  相似文献   

9.
针对不规则波浪作用下Wigley型船的运动响应问题进行了系统的研究,采用统计学方法深入探讨了船舶不规则运动幅值和响应周期的分布规律,并通过傅里叶变换对船舶运动响应进行了频谱特征分析。结果表明,船舶横摇方向与升沉和纵摇方向随机运动的响应特征有显著差异。在升沉与纵摇方向,波浪谱峰频率远离自振频率,前十分之一大振幅运动对应周期离散性较小,基本稳定在波浪谱峰周期附近,但小振幅运动周期分布离散性较大,频谱分析指出船舶升沉与纵摇运动响应频谱在波浪谱峰频率附近出现明显峰值。而在横摇方向,波浪谱峰频率与自振频率相耦合,不同振幅的横摇运动响应周期均稳定在自振周期附近,且周期离散性较小,频谱分析也表明横摇运动响应频谱主要集中于船舶运动自振频率附近。  相似文献   

10.
In order to predict the roll motion of a floating structure in irregular waves accurately, it is crucial to estimate the unknown damping coefficients and restoring moment coefficients in the nonlinear roll motion equation. In this paper, a parameter identification method based on a combination of random decrement technique and support vector regression (SVR) is proposed to identify the coefficients in the roll motion equation of a floating structure by using the measured roll response in irregular waves. Case studies based on the simulation data and model test data respectively are designed to validate the applicability and validity of the identification method. Firstly, the roll motion of a vessel is simulated by using the known coefficients from literature, and the simulated data are used to identify the coefficients in the roll motion equation. The identified coefficients are compared with the known values to validate the applicability of the identification method. Then the roll motion is predicted by using the identified coefficients. The prediction results are compared with the simulated data, and good agreement is achieved. Secondly, the model test data of a FPSO are used to identify the coefficients in the roll motion equation. Then the random decrement signature of the roll motion is predicted by using the identified coefficients and compared with that obtained from the model test data, and satisfactory agreement is achieved. From this study, it is shown that the identification method can be effectively applied to identify the coefficients in the nonlinear roll motion equation in irregular waves.  相似文献   

11.
The large roll motion of ships sailing in the seaway is undesirable because it may lead to the seasickness of crew and unsafety of vessels and cargoes, thus it needs to be reduced. The aim of this study is to design a rudder roll stabilization system based on Radial Basis Function Neural Network (RBFNN) control algorithm for ship advancing in the seaway only through rudder actions. In the proposed stabilization system, the course keeping controller and the roll damping controller were accomplished by utilizing modified Unscented Kalman Filter (UKF) training algorithm, and implemented in parallel to maintain the orientation and reduce roll motion simultaneously. The nonlinear mathematical model, which includes manoeuvring characteristics and wave disturbances, was adopted to analyse ship’s responses. Various sailing states and the external wave disturbances were considered to validate the performance and robustness of the proposed roll stabilizer. The results indicate that the designed control system performs better than the Back Propagation (BP) neural networks based control system and conventional Proportional-Derivative (PD) based control system in terms of reducing roll motion for ship in waves.  相似文献   

12.
A stochastic model is reported for the rolling motion due to wind gusts having a non-uniform Poisson distribution and a constant amplitude.This paper is an improvement on a previous one where the external exciting term due to wind was au niform Poisson process.The statistics of the rolling motion amplitude process which is non-stationary are obtained and used for deriving a majorizing function for the probability of capsizing.The resulting inequality is used for a small cargo ship.  相似文献   

13.
14.
Lin Lu  Bin Teng  Bing Chen 《Ocean Engineering》2011,38(13):1403-1416
This work presents two-dimensional numerical results of the dependence of wave forces of multiple floating bodies in close proximity on the incident wave frequency, gap width, body draft, body breadth and body number based on both viscous fluid and potential flow models. The numerical models were validated by the available experimental data of fluid oscillation in narrow gaps. Numerical investigations show that the large amplitude responses of horizontal and vertical wave forces appear around the fluid resonant frequencies. The convectional potential flow model is observed to un-physically overestimate the magnitudes of wave forces as the fluid resonance takes place. By introducing artificial damping term with appropriate damping coefficients μ∈[0.4, 0.5], the potential flow model may work as well as the viscous fluid model, which agree with the damping coefficients used in our previous work for the predication of wave height under gap resonance. In addition, the numerical results of viscous fluid model suggest that the horizontal wave force is highly dependent on the water level difference between the opposite sides of an individual body and the overall horizontal wave force on the floating system is generally smaller than the summation of wave force on each body.  相似文献   

15.
The best way of reducing roll motion is by increasing roll damping. Bilge keels are the most common devices for increasing roll damping. If more control is required, anti-roll tanks and fins are used. Tanks have the advantage of being able to function when the ship is not underway. Our objective is to develop design procedures for passive tanks for roll reduction in rough seas. This paper focuses on the design of passive U-tube tanks. The tank-liquid equation of motion is integrated simultaneously with the six-degree-of-freedom (6DOF) equations of the ship motion. The coupled set of equations is solved by using the Large Amplitude Motion Program ‘LAMP’, which is a three-dimensional time-domain simulation of the motion of ships in waves. The unstabilized and stabilized roll motions of a S60-70 ship with forward speed and beam waves have been analyzed. For high-amplitude waves, the unstabilized roll angle exhibits typical nonlinear phenomena: a shift in the resonance frequency, multi-valued responses, and jumps. The performance of a S60-70 ship with a passive tank is investigated in various sea states with different encounter wave directions. It is found that passive anti-roll tanks tuned in the linear or nonlinear ranges are very effective in reducing the roll motion in the nonlinear range. The effect of the tank damping, frequency, and mass on the tank performance is studied. Also, it is found that passive anti-roll tanks are very effective in reducing the roll motion for ships having a pitch frequency that is nearly twice the roll frequency in sea states 5 and 6.  相似文献   

16.
The present paper describes a mathematical model in which the fluid motion inside a U-tank is nonlinearly coupled to the heave, roll and pitch motions of the ship. The main purpose of the investigation is centred on the control of roll motion in the case of parametric resonance in longitudinal waves. A transom stern small vessel, known to be quite prone to parametric amplification, is employed in the study. Four tank designs are employed in order to study the influence of tank mass, tank natural frequency and tank internal damping on the control of parametric rolling at different head seas conditions. Additionally, the influence of the vertical position of the tank is also investigated. The main results are presented in the form of limits of stability, with encounter frequency and wave amplitudes as parameters. Distinct dynamical characteristics are discussed and conclusions are drawn on the relevant parameters for the efficient control of the roll amplifications in head seas.  相似文献   

17.
System identification provides an effective way to predict the ship manoeuvrability. In this paper several measures are proposed to diminish the parameter drift in the parametric identification of ship manoeuvring models. The drift of linear hydrodynamic coefficients can be accounted for from the point of view of dynamic cancellation, while the drift of nonlinear hydrodynamic coefficients is explained from the point of view of regression analysis. To diminish the parameter drift, reconstruction of the samples and modification of the mathematical model of ship manoeuvring motion are carried out. Difference method and the method of additional excitation are proposed to reconstruct the samples. Using correlation analysis, the structure of a manoeuvring model is simplified. Combined with the measures proposed, support vector machines based identification is employed to determine the hydrodynamic coefficients in a modified Abkowitz model. Experimental data from the free-running model tests of a KVLCC2 ship are analyzed and the hydrodynamic coefficients are identified. Based on the regressive model, simulation of manoeuvres is conducted. Comparison between the simulation results and the experimental results demonstrates the validity of the proposed measures.  相似文献   

18.
Compared with solar and wind energy, wave energy is a kind of renewable resource which is enormous and still under development. In order to utilize the wave energy, various types of wave energy converters (WECs) have been proposed and studied. And oscillating-body WEC is widely used for offshore deployment. For this type of WEC, the oscillating motion of the floater is converted into electricity by the power take off (PTO) system, which is usually mathematically simplified as a linear spring and a damper. The linear PTO system is characteristic of frequency-dependent response and the energy absorption is less powerful for off resonance conditions. Thus a nonlinear snap through PTO system consisting of two symmetrically oblique springs and a linear damper is applied. A nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two oblique springs to the original length of both springs. JONSWAP spectrum is utilized to generate the time series of irregular waves. Time domain method is used to establish the motion equation of the oscillating-body WEC in irregular waves. And state space model is applied to replace the convolution term in the time domain motion equation. Based on the established motion equation, the motion response of both the linear and nonlinear WEC is numerically calculated using 4th Runge–Kutta method, after which the captured power can be obtained. Then the influences of wave parameters such as peak frequency, significant wave height, damping coefficient of the PTO system and the nonlinear parameter γ on the power capture performance of the nonlinear WEC is discussed in detail. Results show that compared with linear PTO system, the nonlinear snap through PTO system can increase the power captured by the oscillating body WEC in irregular waves.  相似文献   

19.
南海文昌地区内波振幅反演研究   总被引:3,自引:2,他引:1  
The field experiment is conducted from April 16,2005 to July 20,2005 at Wenchang area east of Hainan Island(19°35'N,112°E) of China.Internal wave packets are observed frequently with thermistor chains during the experiment.Meanwhile,internal waves are also detected from a synthetic aperture radar(SAR) image on June 19,2005 and several other moderate-resolution imaging spectroradiometer(MODIS) images near a mooring position.The distance between the positive and negative peaks induced by the internal wave can be obtained from satellite images.Combined with remote sensing images and in situ data,a new method to inverse the amplitude of the internal wave is proposed based on a corrected nonlinear Schr?dinger(NLS) equation.Two relationships are given between the peak-to-peak distance and the characteristic wavelength of the internal wave for different nonlinear and dispersion coefficients.Based on the satellite images,the amplitude inversion of the internal waves are carried out with the NLS equation as well as the Kd V equation.The calculated amplitudes of the NLS equation are close to the observation amplitude which promise the NLS equation a reliable method.  相似文献   

20.
随机波浪下Truss Spar平台垂荡运动时域分析   总被引:4,自引:2,他引:2  
研究Truss Spar平台在随机波浪下的垂荡运动特性。采用ITTC双参数谱,考虑绕射作用,数值计算了平台所受的随机波浪力。利用已有的水动力试验和数值模拟结果及Morison方程,估计了Truss Spar平台垂荡方向的附加质量和粘滞阻尼大小。考虑非线性阻尼和瞬时波面的影响,运用Runge-Kutta数值迭代算法,比较了不同随机波浪参数对平台运动响应的影响,特别是波浪特征周期接近垂荡固有周期时。结果表明,当波浪特征周期接近平台垂荡固有周期时,平台产生大幅垂荡运动,频域的运动分析结果比时域结果偏小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号