首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seakeeping characteristics of a Small Waterplane Area Twin Hull (SWATH) vehicle equipped with fixed stabilizing fins was investigated by experimental and numerical methods The calculation methods range from viscous CFD simulation based on an unsteady RANS approach to Boundary Element Method (BEM) based on Three Dimensional Translating-pulsating Source Green Function (3DTP). Responses of ship motions in head regular waves and nonlinear effects on motion responses with increasing wave amplitude were analyzed. Numerical simulations have been validated by comparisons with experimental tests. The results indicate that the heave and pitch transfer functions depict two peaks with the increase of wave length. Comparisons amongst experimental data and different numerical calculations illustrate that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. The heave and pitch transfer functions see a downward trend with the increasing wave amplitude in the resonant zone at low speed.  相似文献   

2.
Parametric rolling is one of five types of the ship stability failure modes as proposed by IMO. The periodic change of the metacentric height is often considered as the internal cause of this phenomenon. Parametric rolling is a complex nonlinear hydrodynamic problem, often accompanied by large amplitude vertical motions of ships. In recent years,the Reynolds-averaged Navier–Stokes(RANS) equation simulations for viscous flows have made great progress in the field of ship seakeeping. In this paper, the parametric rolling for the C11 containership in regular waves is studied both experimentally and numerically. In the experiments, parametric rolling amplitudes at different drafts, forward speeds and wave steepnesses are analyzed. The differences in the steady amplitudes of parametric rolling are observed for two drafts. The effect of the incident wave steepness(or wave amplitude) is also studied, and this supports previous results obtained on limits of the stability for parametric rolling. In numerical simulations, the ship motions of parametric rolling are analyzed by use of the potential-flow and viscous-flow methods. In the viscousflow method, the Reynolds-averaged Navier–Stokes equations are solved using the overset grid method. The numerical accuracies of the two methods at different wave steepnesses are also discussed.  相似文献   

3.
The dynamic stability of fishing vessels in longitudinal regular waves is investigated, both analytically and experimentally. In particular, the influence of stern shape on the parametric stability of fishing vessels is studied. Vessels TS and RS have very similar main characteristics, but their sterns are different. Although their linear responses are comparable, both analytical and experimental investigations indicate substantial differences in their dynamic stability in longitudinal regular waves. Strong resonances are found for the vessel with the deep transom. The analytical method takes into consideration the effects of the heave and pitch motions and wave passage and shows good agreement with experimental results. Stability limits are obtained for different conditions and are used as an aid in the discussion of the results obtained in the tests when relevant parameters are changed, such as wave amplitude and frequency, metacentric height and roll damping moment.  相似文献   

4.
The present paper describes a mathematical model in which the fluid motion inside a U-tank is nonlinearly coupled to the heave, roll and pitch motions of the ship. The main purpose of the investigation is centred on the control of roll motion in the case of parametric resonance in longitudinal waves. A transom stern small vessel, known to be quite prone to parametric amplification, is employed in the study. Four tank designs are employed in order to study the influence of tank mass, tank natural frequency and tank internal damping on the control of parametric rolling at different head seas conditions. Additionally, the influence of the vertical position of the tank is also investigated. The main results are presented in the form of limits of stability, with encounter frequency and wave amplitudes as parameters. Distinct dynamical characteristics are discussed and conclusions are drawn on the relevant parameters for the efficient control of the roll amplifications in head seas.  相似文献   

5.
规则波中船舶复原力和参数横摇研究   总被引:1,自引:1,他引:0  
为研究规则波中船舶复原力变化规律及其对参数横摇的影响,首先,基于切片理论求解出船舶无横倾时在波浪中时间序列垂荡和纵摇运动,确定出波面与船体的相对位置;其次,利用三个坐标系之间的转换关系进而确定规则波中船体各横剖面左右舷与波面瞬时交点,求得各浸水剖面面积;然后对波浪压力沿船长湿表面积分,得出规则波中船舶复原力的Froude-Krylov部分。同时,利用作用在横倾船舶上的辐射力和绕射力,求出规则波中船舶复原力辐射力和绕射力部分。在复原力计算的基础上,确定一个参数横摇模型,实现波浪中参数横摇计算。以一艘集装箱船为例,研究了规则波中复原力变化以及参数横摇规律,复原力变化幅度是影响参数横摇的一个重要因素。  相似文献   

6.
Wang  Li-yuan  Tang  You-gang  Li  Yan  Zhang  Jing-chen  Liu  Li-qin 《中国海洋工程》2020,34(2):289-298
The paper studies the parametric stochastic roll motion in the random waves. The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed. Random sea surface is treated as a narrow-band stochastic process, and the stochastic parametric excitation is studied based on the effective wave theory. The nonlinear restored arm function obtained from the numerical simulation is expressed as the approximate analytic function. By using the stochastic averaging method, the differential equation of motion is transformed into Ito's stochastic differential equation. The steady-state probability density function of roll motion is obtained, and the results are validated with the numerical simulation and model test.  相似文献   

7.
Point absorber wave energy device with multiple degrees of freedom (DOF) is assumed to have a better absorption ability of mechanical energy from ocean waves. In this paper, a coaxial symmetric articulated point absorber wave energy converter with two degrees of freedom is presented. The mechanical equations of the oscillation buoy with power take-off mechanism (PTO) in regular waves are established. The three-dimensional numerical wave tank is built in consideration of the buoy motion based upon the CFD method. The appropriate simulation elements are selected for the buoy and wave parameters. The feasibility of the CFD method is verified through the contrast between the numerical simulation results of typical wave conditions and test results. In such case, the buoy with single DOF of heave, pitch and their coupling motion considering free (no PTO damping) and damped oscillations in regular waves are simulated by using the verified CFD method respectively. The hydrodynamic and wave energy conversion characteristics with typical wave conditions are analyzed. The numerical results show that the heave and pitch can affect each other in the buoy coupling motion, hydrodynamic loads, wave energy absorption and flow field. The total capture width ratio with two coupled DOF motion is higher than that with a single DOF motion. The wave energy conversion of a certain DOF motion may be higher than that of the single certain DOF motion even though the wave is at the resonance period. When the wave periods are high enough, the interaction between the coupled DOF motions can be neglected.  相似文献   

8.
The prediction of ship stability during the early stages of design is very important from the point of vessel’s safety. Out of the six motions of a ship, the critical motion leading to capsize of a vessel is the rolling motion. In the present study, particular attention is paid to the performance of a ship in beam sea. The linear ship response in waves is evaluated using strip theory. Critical condition in the rolling motion of a ship is when it is subjected to synchronous beam waves. In this paper, a nonlinear approach has been tried to predict the roll response of a vessel. Various representations of damping and restoring terms found in the literature are investigated. A parametric investigation is undertaken to identify the effect of a number of key parameters like wave amplitude, wave frequency, metacentric height, etc.  相似文献   

9.
The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship''s manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.  相似文献   

10.
The best way of reducing roll motion is by increasing roll damping. Bilge keels are the most common devices for increasing roll damping. If more control is required, anti-roll tanks and fins are used. Tanks have the advantage of being able to function when the ship is not underway. Our objective is to develop design procedures for passive tanks for roll reduction in rough seas. This paper focuses on the design of passive U-tube tanks. The tank-liquid equation of motion is integrated simultaneously with the six-degree-of-freedom (6DOF) equations of the ship motion. The coupled set of equations is solved by using the Large Amplitude Motion Program ‘LAMP’, which is a three-dimensional time-domain simulation of the motion of ships in waves. The unstabilized and stabilized roll motions of a S60-70 ship with forward speed and beam waves have been analyzed. For high-amplitude waves, the unstabilized roll angle exhibits typical nonlinear phenomena: a shift in the resonance frequency, multi-valued responses, and jumps. The performance of a S60-70 ship with a passive tank is investigated in various sea states with different encounter wave directions. It is found that passive anti-roll tanks tuned in the linear or nonlinear ranges are very effective in reducing the roll motion in the nonlinear range. The effect of the tank damping, frequency, and mass on the tank performance is studied. Also, it is found that passive anti-roll tanks are very effective in reducing the roll motion for ships having a pitch frequency that is nearly twice the roll frequency in sea states 5 and 6.  相似文献   

11.
12.
As known, the rolling motion characteristics, amplitudes and accelerations, greatly influence the ability of a ship to operate and survive in bad weather. On the other hand, traditional computer codes for seakeeping calculations fail the forecasting of large amplitude rolling. There is a great need of using semi-empirical damping models and coefficients. This stresses the importance of campaigns of measurements as described in the paper, to get a deeper insight into the physical-mathematical modelling of the different contributions to rolling equation.Experimental tests on nonlinear rolling in a regular beam sea of a Ro-Ro ship model have been conducted by varying both the wave steepness and the wave frequency. The use of a parameter estimation technique, based on the least squares fitting of the stationary numerical solution of the nonlinear rolling motion differential equation, allowed to obtain informations on the damping model and on the linear and nonlinear damping coefficients. These exhibit a quite strong dependence on frequency that reduces the efficiency of constant coefficients rolling equation to simulate large amplitude nonlinear rolling. The results indicate that a good quality prediction model of nonlinear rolling cannot be based on constant coefficients time domain simulations. These can infact lead to incorrect estimates of rolling amplitudes even when the parameters have been obtained through high level parameter estimation procedures based on experimental data. The analysis indicates also a marked dependence of the effective wave slope coefficient on wave amplitude. The introduction of both these dependences on the rolling equation allows to reproduce the experimental results with great accuracy even at large amplitudes.  相似文献   

13.
In this paper the rolling motion of a ship is examined with particular regard to the possibility of obtaining oscillations which are subharmonic to the excitation frequency. Three different mechanisms are found to be responsible for this phenomenon, the importance of which has already been recognized in the context of ship stability. The first is related to a strong symmetric or non-symmetric nonlinearity in the righting arm. The second is linked to the harmonic composition of sea waves and the third to the well known parametric excitation caused by coupling between different ship motions in a following sea.The onset of subharmonics is related to a threshold value for the excitation strongly depending on damping. The more appropriate analytical methods for a theoretical study of each mechanism are suggested.  相似文献   

14.
On unstable ship motions resulting from strong non-linear coupling   总被引:1,自引:0,他引:1  
In this paper, the modelling of strong parametric resonance in head seas is investigated. Non-linear equations of ship motions in waves describing the couplings between heave, roll and pitch are contemplated. A third-order mathematical model is introduced, aimed at describing strong parametric excitation associated with cyclic changes of the ship restoring characteristics. A derivative model is employed to describe the coupled restoring actions up to third order. Non-linear coupling coefficients are analytically derived in terms of hull form characteristics.The main theoretical aspects of the new model are discussed. Numerical simulations obtained from the derived third-order non-linear mathematical model are compared to experimental results, corresponding to excessive motions of the model of a transom stern fishing vessel in head seas. It is shown that this enhanced model gives very realistic results and a much better comparison with the experiments than a second-order model.  相似文献   

15.
Wan Wu  Leigh McCue   《Ocean Engineering》2008,35(17-18):1739-1746
Traditionally, when using Melnikov's method to analyze ship motions, the damping terms are treated as small. This is typically true for roll motion but not always true for other and/or multiple degrees of freedom. In order to apply Melnikov's method to other and/or multiple-degree-of-freedom motions, the small damping assumption must be addressed. In this paper, the extended Melnikov method is used to analyze ship motion without the constraint of small linear damping. Two roll motion models are analyzed here. One is a simple roll model with nonlinear damping and cubic restoring moment. The other is the model with biased restoring moment. Numerical simulations are investigated for both models. The effectiveness and accuracy of this method is demonstrated.  相似文献   

16.
Two computations of the KCS model with motions are presented. Self-propulsion in model scale free to sink and trim are studied with the rotating discretized propeller from the Hamburg Model Basin (HSVA) at Fr = 0.26. This case is particularly complex to simulate due to the close proximity of the propeller to the rudder. The second case involves pitch and heave in regular head waves. Computations were performed with CFDShip-Iowa version 4.5, a RANS/DES CFD code designed for ship hydrodynamics. The self-propulsion computations were carried out following the procedure described in Carrica et al. [1], in which a speed controller is used to find the propeller rotational speed that results in the specified ship velocity. The rate of revolutions n, sinkage, trim, thrust and torque coefficients KT, KQ and resistance coefficient CT(SP) are thus obtained. Comparisons between CFD and EFD show that the rate of revolutions n, thrust and torque coefficients KT and KQ have higher prediction accuracies than sinkage and trim. For the simulation of pitch and heave in head waves, the geometry includes KCS hull and rudder under three conditions with two Froude numbers and three wave length and amplitude combinations. 0th and 1st harmonic amplitudes and 1st harmonic phase are computed for total resistance coefficient CT, heave motion z and pitch angle θ. Comparisons between CFD and EFD show that pitch and heave are much better predicted than the resistance. In both cases comparisons with simulations by other authors presented at the G2010 CFD Workshop [2] using different CFD methodologies are included.  相似文献   

17.
Ivo  &#x;ime  Stipe 《Ocean Engineering》2008,35(5-6):523-535
The importance of hydroelastic analysis of large and flexible container ships of today is pointed out. A methodology for investigation of this challenging phenomenon is drawn up and a mathematical model is worked out. It includes definition of ship geometry, mass distribution, structure stiffness, and combines ship hydrostatics, hydrodynamics, wave load, ship motion and vibrations. Based on the presented theory, a computer program is developed and applied for hydroelastic analysis of a flexible segmented barge for which model test results of motion and distortion in waves have been available. A correlation analysis of numerical simulation and measured response shows quite good agreement of the transfer functions for heave, pitch, roll, vertical and horizontal bending and torsion. The tool checked in such a way can be further used for reliable hydroelastic analysis of ship-like structures.  相似文献   

18.
K. D. Do  J. Pan  Z. P. Jiang   《Ocean Engineering》2003,30(17):2201-2225
This paper addresses an important problem in ship control application—the robust stabilization of underactuated ships on a linear course with comfort. Specifically, we develop a multivariable controller to stabilize ocean surface ships without a sway actuator on a linear course and to reduce roll and pitch simultaneously. The controller adapts to unknown parameters of the ship and constant environmental disturbances induced by wave, ocean current and wind. It is also robust to time-varying environmental disturbances, time-varying change in ship parameters and other motions of the ship such as surge and heave. The roll and pitch can be made arbitrarily small while the heading angle and sway are kept to be in reasonably small bounds. The controller development is based on Lyapunov’s direct method and backstepping technique. A Lipschitz continuous projection algorithm is used to update the estimate of the unknown parameters to avoid the parameters’ drift due to time-varying environmental disturbances. Simulations on a full-scale catamaran illustrate the effectiveness of our proposed controller.  相似文献   

19.
共振运动是深海浮式平台设计的关键考虑因素之一,对海洋平台的作业具有重要影响。采用半潜式平台运动的非线性耦合数学模型,考虑浮筒和横撑出入水以及垂荡、横摇和纵摇运动耦合对平台浮力和恢复力的影响,研究半潜式平台非线性共振运动特性,以及不规则波浪参数对运动的影响。研究表明:在非线性耦合运动和浮力变化的影响下,半潜式平台纵摇和垂荡运动的固有周期会随运动幅值的增大而逐渐减小,且最终趋于稳定,对纵摇运动周期的影响更为显著;非线性效应会使半潜式平台产生显著的低频纵摇共振响应,以及共振频率漂移的现象,且受随机种子和波浪周期的影响较小。  相似文献   

20.
S. Surendran  S.K. Lee  K.H. Sohn   《Ocean Engineering》2007,34(3-4):630-637
The world container fleet shows the fastest growth of any ship type. The infrastructure for loading and unloading container ships are also growing in many ports around the world. Such a trend is due to the fact that the containerized transportation is becoming more and more attractive due to many factors. The increasing demand in container transportation is met by use of more number of container ships including Post-Panamax and Malacca-max containers. Loss of containers in seas and accidents of container vessels are reported from many parts of seas. New generation containers are severely hit by parametric rolling. Pure loss of stability, due to exponential increase of roll in either broaching—to or head sea conditions, is called parametric rolling, is subjected to rigorous investigation by many researchers. Algebraic expression based on well known Duffing's method is proposed for solutions in parametric rolling. The variation in GM and damping values from trough to crest conditions associated with bow flare immersion and emergence in head sea conditions with pitch resonance with the heading waves are said to be the prime reason for parametric rolling. A simple model to predict the beginning of parametric rolling is described in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号