首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
南北涛动与南极涛动及北极涛动的相互作用   总被引:1,自引:0,他引:1  
利用NCEP/NCAR再分析资料,分析了南北涛动(Interhemispheric Oscillation,IHO)与北极涛动(Arctic Oscillation,AO)和南极涛动(Antarctic Oscillation,AAO)的联系。分析表明:1)北极涛动(AO)、南极涛动(AAO)与全年各自半球中高纬度地表气压变化密切联系。其中,AO冬季强度最强,且在春季、冬季的影响范围大。而AAO对南半球中高纬的地表气压变动影响更为明显,其在夏季影响范围最大。2)南极涛动(AAO)与南北涛动(IHO)有很好的同期相关性,南极涛动可部分解释南北涛动的形成。IHO与AO存在不显著的负相关,南北半球中高纬大气运动具有相对独立性。3)南北涛动(IHO)与全球较大范围内的地面气压变化有关,而去除AAO信号后,夏季在南极地区原显著相关区显著减少,夏季AAO与IHO存在密切联系。4)南北涛动(IHO)主要与春季、秋季和冬季亚洲、欧洲北部地面气温关系密切。秋季最强,春季次之,冬季最弱。夏季IHO与全球地面气温没有较好的联系。亚欧大陆北部的热力作用可能部分地解释了南北涛动的形成。  相似文献   

2.
This study examines the Indian summer monsoon hydroclimate in the National Centers for Environmental Prediction (NCEP)-Department of Energy (DOE) Reanalysis (R2), the Climate Forecast System Reanalysis (CFSR), and the Modern Era Retrospective-Analysis for Research and Applications (MERRA). The three reanalyses show significant differences in the climatology of evaporation, low-level winds, and precipitable water fields over India. For example, the continental evaporation is significantly less in CFSR compared to R2 and MERRA. Likewise the mean boreal summer 925?hPa westerly winds in the northern Indian Ocean are stronger in R2. Similarly the continental precipitable water in R2 is much less while it is higher and comparable in MERRA and CFSR. Despite these climatological differences between the reanalyses, the climatological evaporative sources for rain events over central India show some qualitative similarities. Major differences however appear when interannual variations of the Indian summer monsoon are analyzed. The anomalous oceanic sources of moisture from the adjacent Bay of Bengal and Arabian Sea play a significant role in determining the wet or dry year of the Indian monsoon in CFSR. However in R2 the local evaporative sources from the continental region play a more significant role. We also find that the interannual variability of the evaporative sources in the break spells of the intraseasonal variations of the Indian monsoon is stronger than in the wet spells. We therefore claim that instead of rainfall, evaporative sources may be a more appropriate metric to observe the relationship between the seasonal monsoon strength and intraseasonal activity. These findings are consistent across the reanalyses and provide a basis to improve the predictability of intraseasonal variability of the Indian monsoon. This study also has a bearing on improving weather prediction for tropical cyclones in that we suggest targeting enhanced observations in the Bay of Bengal (where it is drawing the most moisture from) for improved analysis during active spells of the intraseasonal variability of the Indian monsoon. The analysis suggests that the land–atmosphere interactions contribute significant uncertainty to the Indian monsoon in the reanalyses, which is consistent with the fact that most of the global reanalyses do not assimilate any land-surface data because the data are not available. Therefore, the land–atmosphere interaction in the reanalyses is highly dependent on the land-surface model and it’s coupling with the atmospheric model.  相似文献   

3.
We examine the representation of the mean state and interannual variability of Antarctic sea ice in six simulations of the twentieth century from coupled models participating in the Intergovernmental Panel on Climate Change fourth assessment report. The simulations exhibit a largely seasonal southern hemisphere ice cover, as observed. There is a considerable scatter in the monthly simulated climatological ice extent among different models, but no consistent bias when compared to observations. The scatter in maximum winter ice extent among different models is correlated to the strength of the climatological zonal winds suggesting that wind forced ice transport is responsible for much of this scatter. Observations show that the leading mode of southern hemisphere ice variability exhibits a dipole structure with anomalies of one sign in the Atlantic sector associated with anomalies of the opposite sign in the Pacific sector. The observed ice anomalies also exhibit eastward propagation with the Antarctic circumpolar current, as part of the documented Antarctic circumpolar wave phenomenon. Many of the models do simulate dipole-like behavior in sea ice anomalies as the leading mode of ice variability, but there is a large discrepancy in the eastward propagation of these anomalies among the different models. Consistent with observations, the simulated Antarctic dipole-like variations in the ice cover are led by sea-level pressure anomalies in the Amundsen/ Bellingshausen Sea. These are associated, to different degrees in different models, with both the southern annular mode and the El Nino-Southern Oscillation (ENSO). There are indications that the magnitude of the influence of ENSO on the southern hemisphere ice cover is related to the strength of ENSO events simulated by the different models.  相似文献   

4.
This paper provides evidence that the variation of boreal winter sea level pressure (SLP) over the North Pacific is out-of-phase with SLP fluctuation over the tropical Indian Ocean on both the interdecadal and interannual time scales.Subsequently,a SLP between tropical Indian Ocean and North Pacific (TIO-NP) oscillation index is defined to indicate the variation of such out-of-phase fluctuation.Moreover,the simultaneous surface air temperature and precipitation anomalies in China are closely related to TIO-NP oscillations.Below-normal surface air temperature anomalies in the northern and the eastern part of China,and less rainfall in southern China,correspond to positive TIO-NP oscillation phase with negative SLP anomalies in tropical Indian Ocean and positive anomalies in North Pacific.The TIO-NP oscillation affects China’s winter climate anomalies,possibly through modulating the northeast East Asia winter monsoon.  相似文献   

5.
南北两半球大气的相互作用和季风的本质   总被引:56,自引:10,他引:56       下载免费PDF全文
曾庆存  李建平 《大气科学》2002,26(4):433-448
理性分析和利用NCEP/NCAR资料进行统计分析表明:大气环流的季节变化和越赤道气流即两半球的相互作用首先是由于赤道面与黄道面有交角而使太阳辐射有年变化所致,行星热对流环流是热带季风的"第一推动力",而地表面特性差异(海陆热力特性差异以及地形高度等)所导致的准定常行星波为"第二推动力".如以推动大气质量跨纬圈传输的效力来看,平均来说二推动力的功效之比为2:l.第二推动力在亚澳季风区与第一推动力合拍,使热带季风在亚澳区内最明显,而各经圈环流圈的上下及南北关联及与中高纬准定常行星波的配置则使全球范围内从低纬到高纬、从低空到高空有地域性的明显季节变化区,从而构成三度空间的全球季风系统.  相似文献   

6.
Convectively coupled equatorial Rossby (ER) waves display maximum varability over the northern hemisphere during boreal summer and over the southern hemisphere during boreal winter. It suggests that the seasonal variation of ER waves is significantly affected by the annual cycle of basic state. However, which specific environmental factor plays a determining role remains obscure. This study investigates the background influence on the seasonal variation of ER wave by employing an intermediate anomaly atmospheric model. By prescribing boreal summer/winter seasonal mean state as the model’s basic state, the authors found that the model is able to simulate the trapping of the ER wave purtrubation over the northern/southern hemisphere as in observation. Further sensitivity experiments suggest that the moisture distribution plays a major role in modulating the ER wave structure while the mosoonal flows play a minor role.  相似文献   

7.
The global summer monsoon precipitation (GSMP) provides a fundamental measure for changes in the annual cycle of the climate system and hydroclimate. We investigate mechanisms governing decadal-centennial variations of the GSMP over the past millennium with a coupled climate model’s (ECHO-G) simulation forced by solar-volcanic (SV) radiative forcing and greenhouse gases (GHG) forcing. We show that the leading mode of GSMP is a forced response to external forcing on centennial time scale with a globally uniform change of precipitation across all monsoon regions, whereas the second mode represents internal variability on multi-decadal time scale with regional characteristics. The total amount of GSMP varies in phase with the global mean temperature, indicating that global warming is accompanied by amplification of the annual cycle of the climate system. The northern hemisphere summer monsoon precipitation (NHSMP) responds to GHG forcing more sensitively, while the southern hemisphere summer monsoon precipitation (SHSMP) responds to the SV radiative forcing more sensitively. The NHSMP is enhanced by increased NH land–ocean thermal contrast and NH-minus-SH thermal contrast. On the other hand, the SHSMP is strengthened by enhanced SH subtropical highs and the east–west mass contrast between Southeast Pacific and tropical Indian Ocean. The strength of the GSMP is determined by the factors controlling both the NHSMP and SHSMP. Intensification of GSMP is associated with (a) increased global land–ocean thermal contrast, (b) reinforced east–west mass contrast between Southeast Pacific and tropical Indian Ocean, and (c) enhanced circumglobal SH subtropical highs. The physical mechanisms revealed here will add understanding of future change of the global monsoon.  相似文献   

8.
有关南半球大气环流与东亚气候的关系研究的若干新进展   总被引:14,自引:15,他引:14  
范可  王会军 《大气科学》2006,30(3):402-412
南半球大气环流是全球大气环流的重要组成部分,也是影响气候变化和亚洲季风系统的一个重要因素.中国气象学家很早就注意到南半球大气环流对东亚夏季风降水的影响.近年来,有关南半球气候变率的研究目前正受到世界气象学家越来越多的关注.南半球中高纬大气资料的丰富及南极涛动的确定,使得认识南半球高中纬环流的年际变动规律及其与东亚气候关系成为可能.本文主要介绍近年来有关南极涛动的年际变化与沙尘天气发生频次及东亚冬春季气候的关系,古气候资料揭示的南极涛动与华北降水的关系,以及南半球大气环流与长江中下游夏季降水的关系和南极涛动变率的可预测性等方面的研究进展.并对未来研究方向作了初步的展望.  相似文献   

9.
中国南海夏季风强、弱年多尺度相互作用能量学特征   总被引:1,自引:0,他引:1  
杨悦  徐邦琪  何金海 《气象学报》2016,74(4):556-571
中国南海夏季风为东亚季风的主要系统之一,其具有多重尺度特征,除季节平均环流场外,低频(季节内振荡)和高频(天气尺度)扰动也十分活跃,各尺度系统存在明显的年际变化。该研究使用ERA-Interim和NCEP/NCAR两套再分析资料,从季风平均动能(MKE)诊断的角度出发,探讨了1979-2010年中国南海夏季风环流年际变化的能量来源及其和扰动场的相互作用过程。结果表明:中国南海夏季风对流活跃年份,中国南海南部(12°N以南)及中南半岛一带为季风平均动能显著增强区,此与南亚季风区西风急流的增强并向东延伸有关;中国南海北部(12°N以北)及西太平洋为气旋性环流盘踞,季风槽加深。中国南海南部季风平均动能增强的能量源自于扰动动量通量与平均环流的相互作用,强季风年,平均环流失去较少的动能给扰动场(亦即平均环流保留较多的动能)。通过进一步探讨高频(<10 d)及低频(10-90 d)扰动场与平均环流不同分量的(散度、涡度、风垂直切变)相互作用过程,发现季风平均动能的增长主要来自于<10 d扰动与季风平均散度和涡度的相互作用。中国南海北部季风槽区季风平均动能的维持来自于大气热源和平均上升运动的相互作用,但同时有较多的季风平均动能向扰动动能转换,有利于扰动的成长。因此,强季风年,中国南海北部热带气旋生成数目增多,夏季北传的季节内振荡也增强,导致中国南部沿海及华南地区出现较多的灾害天气。   相似文献   

10.
南半球环流异常与我国夏季旱涝分布关系及其影响机制   总被引:6,自引:0,他引:6  
利用1951—2000年NCEP/NCAR风场和高度场再分析资料及全国160站降水量资料, 采用奇异值分解、相关和合成分析方法, 研究6—8月南半球500 hPa高度、高低层纬向风距平差异常 (Δu850-Δu200) 与我国夏季旱涝分布的关系及其影响机制。结果表明:当500 hPa澳大利亚高压脊偏强及西南太平洋热带地区高低层纬向风距平差为负值时, 来自南半球冷空气活动偏弱, 有利于西北太平洋副热带高压位置偏南, 热带季风偏弱, 我国夏季雨带偏南。反之, 当澳大利亚高压脊偏弱及西南太平洋热带地区高低层纬向风距平差为正值时, 我国北方降水偏多。同时, 定义了澳大利亚冬季风指数, 指出澳大利亚冬季风强年和弱年影响我国夏季旱涝分布异常的水汽输送型式不同。  相似文献   

11.
Monsoon precipitation in the AMIP runs   总被引:5,自引:1,他引:4  
 We present an analysis of the seasonal precipitation associated with the African, Indian and the Australian-Indonesian monsoon and the interannual variation of the Indian monsoon simulated by 30 atmospheric general circulation models undertaken as a special diagnostic subproject of the Atmospheric Model Intercomparison Project (AMIP). The seasonal migration of the major rainbelt observed over the African region, is reasonably well simulated by almost all the models. The Asia West Pacific region is more complex because of the presence of warm oceans equatorward of heated continents. Whereas some models simulate the observed seasonal migration of the primary rainbelt, in several others this rainbelt remains over the equatorial oceans in all seasons. Thus, the models fall into two distinct classes on the basis of the seasonal variation of the major rainbelt over the Asia West Pacific sector, the first (class I) are models with a realistic simulation of the seasonal migration and the major rainbelt over the continent in the boreal summer; and the second (class II) are models with a smaller amplitude of seasonal migration than observed. The mean rainfall pattern over the Indian region for July-August (the peak monsoon months) is even more complex because, in addition to the primary rainbelt over the Indian monsoon zone (the monsoon rainbelt) and the secondary one over the equatorial Indian ocean, another zone with significant rainfall occurs over the foothills of Himalayas just north of the monsoon zone. Eleven models simulate the monsoon rainbelt reasonably realistically. Of these, in the simulations of five belonging to class I, the monsoon rainbelt over India in the summer is a manifestation of the seasonal migration of the planetary scale system. However in those belonging to class II it is associated with a more localised system. In several models, the oceanic rainbelt dominates the continental one. On the whole, the skill in simulation of excess/deficit summer monsoon rainfall over the Indian region is found to be much larger for models of class I than II, particularly for the ENSO associated seasons. Thus, the classification based on seasonal mean patterns is found to be useful for interpreting the simulation of interannual variation. The mean rainfall pattern of models of class I is closer to the observed and has a higher pattern correlation coefficient than that of class II. This supports Sperber and Palmer’s (1996) result of the association of better simulation of interannual variability with better simulation of the mean rainfall pattern. The hypothesis, that the skill of simulation of the interannual variation of the all-India monsoon rainfall in association with ENSO depends upon the skill of simulation of the seasonal variation over the Asia West Pacific sector, is supported by a case in which we have two versions of the model where NCEP1 is in class II and NCEP2 is in class I. The simulation of the interannual variation of the local response over the central Pacific as well as the all-India monsoon rainfall are good for NCEP2 and poor for NCEP1. Our results suggest that when the model climatology is reasonably close to observations, to achieve a realistic simulation of the interannual variation of all-India monsoon rainfall associated with ENSO, the focus should be on improvement of the simulation of the seasonal variation over the Asia West Pacific sector rather than further improvement of the simulation of the mean rainfall pattern over the Indian region. Received: 2 June 1997 / Accepted: 8 January 1998  相似文献   

12.
前、后冬的东亚冬季风年际变异及其与东亚降水的关系   总被引:2,自引:1,他引:2  
利用ERA-Interim的再分析资料和NOAA海温、降水量等资料对前、后冬的东亚冬季风的年际变异特征及其与东亚降水的关系进行对比分析,并讨论了热带和中高纬系统影响东亚冬季风变异的相对重要性。前冬的东亚冬季风变异的主导模态为东亚全区一致变异型,即一致的北风偏弱或偏强;其次为南部变异型,主要表现为在我国南方-南海北部的东北风偏弱或偏强。而后冬的东亚冬季风变异的主导模态则为南部变异型,其次为东亚全区一致变异型。从前冬到后冬,东亚冬季风的主要变异模态的次序出现交叉更替。前、后冬的冬季风主要模态以年际变化为主,但后冬主导模态还显示出冬季风有变强的趋势。前、后冬的东亚冬季风的主导变异模态也影响东亚降水异常的位置。在前冬,冬季风异常主要影响我国华北、渤海-黄海海域以及朝鲜半岛和日本南部区域的降水异常,而后冬的冬季风异常则主要导致我国东南地区及其东侧附近的西北太平洋海区的降水异常。前冬的东亚冬季风的前两种主要变异模态都受到印度洋-太平洋海温和中高纬环流系统共同的影响;后冬的东亚冬季风的前两种主要变异模态则分别主要受ENSO和中高纬系统的影响。   相似文献   

13.
The meteorological characteristics of the drought of 2005 in Amazonia, one of the most severe in the last 100 years were assessed using a suite of seven regional models obtained from the CLARIS LPB project. The models were forced with the ERA-Interim reanalyses as boundary conditions. We used a combination of rainfall and temperature observations and the low-level circulation and evaporation fields from the reanalyses to determine the climatic and meteorological characteristics of this particular drought. The models reproduce in some degree the observed annual cycle of precipitation and the geographical distribution of negative rainfall anomalies during the summer months of 2005. With respect to the evolution of rainfall during 2004–2006, some of the models were able to simulate the negative rainfall departures during early summer of 2005 (December 2004 to February 2005). The interannual variability of rainfall anomalies for both austral summer and fall over northern and southern Amazonia show a large spread among models, with some of them capable of reproducing the 2005 observed negative rainfall departures (four out of seven models in southern Amazonia during DJF). In comparison, all models simulated the observed southern Amazonia negative rainfall and positive air temperature anomalies during the El Nino-related drought in 1998. The spatial structure of the simulated rainfall and temperature anomalies in DJF and MAM 2005 shows biases that are different among models. While some models simulated the observed negative rainfall anomalies over parts of western and southern Amazonia during DJF, others simulated positive rainfall departures over central Amazonia. The simulated circulation patterns indicate a weaker northeasterly flow from the tropical North Atlantic into Amazonia, and reduced flows from southern Amazonia into the La Plata basin in DJF, which is consistent with observations. In general, we can say that in some degree the regional models are able to capture the response to the forcing from the tropical Atlantic during the drought of 2005 in Amazonia. Moreover, extreme climatic conditions in response to anomalous low-level circulation features are also well captured, since the boundary conditions come from reanalysis and the models are largely constrained by the information provided at the boundaries. The analysis of the 2005 drought suggests that when the forcing leading to extreme anomalous conditions is associated with both local and non-local mechanisms (soil moisture feedbacks and remote SST anomalies, respectively) the models are not fully capable of representing these feedbacks and hence, the associated anomalies. The reason may be a deficient reproduction of the land–atmosphere interactions.  相似文献   

14.
1948-2004年全球平均Hadley环流强度指数与特征   总被引:2,自引:0,他引:2  
利用NCEP/NCAR逐月平均风场资料,研究了全球平均Hadley环流特征.利用3层4个关键区的风定义并计算了1948年1月-2004年12月的全球纬向平均的南/北半球和全球Hadley环流逐月强度指数.结果表明:计算的Hadley环流指数可以合理地表示Hadley环流的强度;北半球Hadley环流除7-9月(南半球除5月)外都呈增强趋势;南/北半球的年平均Hadley环流也是增强的.年际相关分析表明:Hadley环流指数与SOI有非常高的负相关,Hadley环流强度的年际变化与ENSO关系密切.  相似文献   

15.
那济海  张耀存 《气象科学》2000,20(2):143-149
利用NNCENP/NCAR1979年1月至1995年12月的全球候平均地面气温再分析资料和同期黑龙江省32个站各候平均地面气温,研究了80年代来全球地面气温的变化特征及其与我国黑龙江省地区冬夏冷暖异常的关系。80年代以来全球气温明显升高,赤道、两极及北半球的高纬地区、南半球的低纬地区变化较大,且先于其它地区出现。与黑龙江省地区温度相关在的地区有亚欧大陆中西部、印度洋、赤道东太平洋、北美西北部及北太  相似文献   

16.
1920~2000年全球6~8月陆地旱涝气候变化   总被引:12,自引:0,他引:12  
施能  陈绿文  封国林 《气象学报》2003,61(2):237-244
用 192 0~ 2 0 0 0年全球 6~ 8月陆地降水量资料研究了全球、北、南半球 6~ 8月旱涝特征。采用加权平均的 6~ 8月降水距平指数和加权平均的 6~ 8月旱涝面积指数来表示全球的旱涝程度 ;从而划分了 192 0~ 2 0 0 0年的全球 6~ 8月降水量的旱涝年。对划分的旱、涝年进行了旱涝年差异的MonteCarlo检验。研究结果指出 ,在 192 0~2 0 0 0年中 ,1988( 193 0 )年是全球最严重的涝 (旱 )年 ,其次是 195 4( 1976)年。全球的及北、南半球的旱涝有明显的年代际变化。 2 0世纪 2 0年代为全球 6~ 8月干旱多发期 ,2 0~ 40年代为全球 6~ 8月洪涝少发期 ,5 0~ 60年代为全球洪涝多发期 ,70年代~ 2 0 0 0年全球旱涝爆发频繁 ,旱年多于涝年。北半球的特征与全球较为一致。南、北半球陆地分别作用为一个整体 ,它们的 6~ 8月旱涝没有明显的联系 ,但是当发生暖 (冷 )事件时 ,南、北半球 6~ 8月可能出现干旱 (洪涝 ) ,全球 6~ 8月的旱涝变化与ENSO之间有明显的联系  相似文献   

17.
This study explores the relationship between latitudinal shifts in the eddy-driven jet and in the Hadley cell edge as depicted in models and reanalyses. We calculate an interannual shift ratio of approximately 1.5:1 between the eddy-driven jet and the Hadley cell edge over the Southern Hemisphere during austral summer in model data. We further find that the ratio varies from season to season, with similarities between corresponding seasons over each hemisphere. Ratios are broadly consistent between models in this study, and appear to be realistic when compared to those from reanalyses. Mean tropical SSTs and the strength of zonal winds in the tropics appear to be critical to determining the ratio, while sea surface temperature variability is not. We argue that conditions in the tropics act to modulate the effect of midlatitude eddies on the Hadley cell, and the action of eddies in turn explains most of the correlated shifts from year to year. In contrast, the mean state of the tropics is a poor predictor of both the ratio of observed trends in reanalyses and the ratio of modeled externally forced shifts. We show that the ratios of modeled shifts are dependent on the type of external forcing.  相似文献   

18.
基于1979—2015年中国区域CN05.1格点降水以及全球降水气候中心(GPCC)降水等数据资料,采用回归、合成分析等方法,分析了青藏高原东部(简称高原)冬季降水的南、北区域性差异及其年际变化对北极涛动(AO)异常的响应。结果表明:(1)高原北部和南部冬季降水都与AO异常存在密切关系,但降水的年际变化并不一致,对AO异常响应的机理也不同。(2)高原北部冬季降水变化主要和东亚冬季风有关,AO正(负)异常时东亚冬季风减弱(增强),高原北部对流层各层均为东南(西北)风距平,有(不)利于西太平洋的水汽进入高原北部,导致北部降水增加(减弱)。(3)高原南部冬季降水变化主要和南支槽有关,AO正(负)异常时南支槽加强(减弱),有(不)利于源自孟加拉湾的水汽北上高原,低层辐合(散)高层辐散(合),上升(下沉)运动增强,导致南部降水增加(减弱)。简言之,AO通过影响东亚冬季风(南支槽),进而影响高原北(南)部冬季降水,但AO负异常对高原冬季降水的影响比AO正异常的影响更加显著。   相似文献   

19.
While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model??s mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves and suggest a weak influence of prescribed observed SST in the northern extratropics. Results therefore indicate that improving the tropical divergent circulation and its response to tropical SST anomalies remains a key issue for increasing the skill of extratropical seasonal predictions, not only in the winter hemisphere but also in the boreal summer hemisphere where the prediction of heatwave and drought likelihood is expected to become an important challenge with increasing concentrations of greenhouse gases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号