首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
青藏高原季节冻土的气候学特征   总被引:5,自引:2,他引:3  
青藏高原季节最大冻土深度变化特征是研究寒区陆面过程的重要方面. 利用青藏高原地区35个地面站1961-1998年最大冻土深度的观测资料及5 cm土壤温度资料, 分析了青藏高原地区土壤季节最大冻结深度时空变化特征. 结果显示: 青藏高原土壤季节最大冻结深度度呈现明显的变化规律, 20世纪60年代至80年代中期土壤季节最大冻结深度相对处于一个增大期, 80年代中期至今土壤季节最大冻结深度在减小. 冻结期间5 cm土壤累积负温距平指标能够较好的描述土壤季节最大冻结深度变化特征, 土壤季节最大冻结深度也是高原地区地面热源强度一个较好的表征参数.  相似文献   

2.
张威  纪然 《冰川冻土》2018,40(1):18-25
利用辽宁省朝阳市气象站1960-2015年的最大季节冻土深度、最长连续冻结时间的起始日和终止日数据,采用小波分析方法对朝阳地区季节性冻土的年际变化特征进行分析,并探讨影响季节性冻土发育的影响因素。结果表明:朝阳地区最大冻土冻结深度存在4种尺度上的周期震荡,其周期分别为23~32 a、16~22 a、10~15 a和4~9 a。冻土年际变化的转折期发生在20世纪90年代初,表明朝阳市冬季气候转暖的时间段也发生在90年代初。通过对气温与季节性冻土冻结深度以及冻结时间的相关性分析,得出气候变暖对朝阳市季节冻土影响显著,冬季平均气温和冬季最低气温是影响朝阳市季节冻土发育的重要因素,其中冬季气温日较差对其影响尤为明显。冬季最低气温与冻土主冻期时间关系最为密切,而影响主冻期结束时间的热力因子为冬季平均最高气温。  相似文献   

3.
青藏高原季节性冻土的时空分布特征   总被引:9,自引:4,他引:5  
利用青藏高原72个气象台站的冬季逐日冻结深度资料, 采用动力学Q指数和小波分析方法, 研究了青藏高原季节性冻土的时空变化特征. 结果发现: 青藏高原季节性冻土各站点相互间的动力学Q指数在高原大部分地区都比较小, 仅在高原南部部分站点值较大, 表明在高原上总体来说季节性冻土的动力学结构是一致的. 各站季节性冻土1980年代前后的Q指数在高原主体也都比较小, 只是在高原东南部和柴达木盆地的部分地区Q指数较大, 表明在高原大部分地区季节性冻土变化的动力学结构特征没有发生突变. 青藏高原季节性冻土总体上呈现下降趋势, 在20世纪80年代中期有一次均值突变, 突变以前的冬季平均冻结深度在93 cm左右, 突变以后的冬季平均冻结深度下降了10 cm左右. 高原季节性冻土冬季平均深度有准4 a的周期变化.  相似文献   

4.
青藏高原总辐射变化对高原季节冻土冻结深度的影响   总被引:6,自引:4,他引:2  
利用青藏高原及其毗邻地区22个辐射观测站建站至2000年的总辐射及日照百分率观测资料,确定了Angstrom-Prescott模型参数,以此模型估算了高原及毗邻地区116个站1961年1月至2000年12月份的总辐射.结合高原地区75个气象站的冻土观测资料,探讨了青藏高原地区总辐射变化对高原土壤季节冻结深度的影响.结果显示,冬季总辐射变化对季节冻深有较大影响.冷湖、玉树两个较典型的站点中总辐射与土壤冻结深度的负相关关系显著,与典型站点相似,德令哈、格尔木两站总辐射与季节冻深亦呈负相关.研究区域内,近乎80%的调查站点,总辐射与季节冻结深度之间关系呈现负相关;另外21%的站点呈现正相关关系.多元回归分析结果显示,纬度、海拔、总辐射及气温4个因子与季节冻结深度的相关显著.总辐射是高原土壤季节冻结深度的重要影响因子之一.  相似文献   

5.
龚强  晁华  朱玲  蔺娜  于秀晶  刘春生  汪宏宇 《冰川冻土》2021,43(6):1782-1793
根据东北地区144个国家气象站1951—2016年的地温和土壤冻结深度资料,采用实测资料统计及统计建模推算的方法,对东北地区地温和冻结深度时空特征进行了细化分析。结果表明:东北地区地温整体由南到北逐渐降低,冻结深度逐渐增大。各层年平均地温呈向北2个纬度降低1 ℃左右,年平均最大冻结深度为向北2~3个纬度加深30 cm左右,极端最大冻结深度为向北2个纬度加深30 cm左右。地温和冻结深度与纬度关系显著,与经度和海拔也有一定相关性,但在东北北部的多年冻土区基本不受后两者影响。不同深度的地温季节特征不同,地表温度季节特征与气温一致,160 cm以下深度四季温度从高到低为秋、夏、冬、春。地表夏季与冬季温差达到33.5 ℃,而320 cm深处最热季与最冷季的温差仅为7 ℃。气候变暖使得东北地区各层地温升高、冻结深度减小、冻结期缩短,尤其在多年冻土区及其临近的高纬度季节冻土区更为显著。相对于下层土壤,地表升温最大。伊春地表升温趋势达到1.16 ℃?(10a)-1,40~320 cm土层升温趋势为0.60 ℃?(10a)-1左右,冻结深度减小、冻结期缩短趋势分别达到 23 cm?(10a)-1、8 d?(10a)-1,大幅升温不利于多年冻土的存在。  相似文献   

6.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

7.
近40a来江河源区生态环境变化的气候特征分析   总被引:69,自引:12,他引:57  
利用月气象资料,对过去40a江河源气候变化特征进行分析,并与全球、全国、青藏高原进行了比较.结果表明:江河源区气温具有增暖趋势,近40a两地年平均气温分别增加约0.8℃和0.7℃,为高原异常变暖区.黄河源区变暖的主要特征是最低气温变暖,日照时数增加;最低、最高气温的显著变暖,以及较黄河源区增加更长的日照时数是长江源区变暖的主要特征.长江源区冬季变暖的作用不是主要的,春季、夏季和秋季的变暖作用比冬季还要大;黄河源区的变暖也并不主要是冬季变暖造成的,秋季变暖的作用与其相当,其它季节的变暖作用也不能忽视.近40a来江河源区降水量略有增加,主要体现在20世纪80年代中后期以来春季与冬季降水量的明显增加,夏季降水量虽然总体上没有明显变化,且局地夏季降水量呈持续减少趋势.与全球、全国以及高原区对比显示,江河源区对全球气候变暖的响应最敏感,变暖首先从长江源和整个高原发端,之后15a.黄河源和全国才进入显著温暖期.黄河源与长江源北部降水量的增加表明,气候变暖有利于高原增加降水量.  相似文献   

8.
吉林省季节冻土冻结深度变化及对气候的响应   总被引:2,自引:2,他引:0  
为了掌握季节冻土冻结深度的变化对气候的响应,利用1961-2015年吉林省46个气象站的逐日平均气温、地表温度、积雪深度、冻土冻结深度等数据,采用线性倾向估计、突变分析等方法,研究了吉林省季节冻土冻结深度的时空演变规律及其与气温、积雪的关系。结果表明:吉林省季节冻土最大冻结深度呈由西向东逐渐减小的空间分布特征,绝大多数站最大冻结深度呈减小趋势。基本上在10月开始冻结,次年3月达到最深,6月完全融化。西部冻土冻结深度变幅较大,其次是中部,东部最小。1961-2015年季节冻土最大冻结深度以-5.8 cm·(10a)-1的速率显著减小(P<0.01)。最大冻结深度基本上呈逐年代减小的趋势,从20世纪90年代开始,最大冻结深度明显减小。最大冻结深度在1987年发生了突变,突变后平均最大冻结深度比突变前平均最大冻结深度减小了22.2 cm。通过分析气温和积雪深度对冻结深度的影响,认为冻土冻结深度对气温变化较为敏感,绝大多数站最大冻结深度与平均气温呈负相关关系。在年际变化上,气温的上升是最大冻结深度减小的主要原因。在季节冻土稳定冻结期,积雪深度超过10 cm,保温作用逐渐变强;当积雪深度达到20 cm时,保温作用显著,冻土冻结深度变浅。  相似文献   

9.
青海湖区降水序列及其变化的特征研究   总被引:4,自引:0,他引:4  
利用青海湖区1958-2005年8个降水观测点月资料, 整理出5条(A~E)年、季降水序列, 应用气候诊断方法分析了降水的年代际变化及其突变特征. 结果表明: 5条序列年、季降水量的年际变化趋势大多数年代比较一致, 并且E序列代表青海湖区降水量比较可靠. 多数序列表现出20世纪60年代春季多雨, 70年代秋季多雨, 80年代春夏秋季多雨, 90年代冬春夏季多雨的季节变化特征以及60-70年代少雨、 80年代多雨和90年代少雨的年代际变化特征比较明显, 多数序列年度和冬、夏季降水量增多的趋势与新疆、河西中西部、柴达木盆地相同. 春季降水量在80年代初发生了一次气候突变, 年度和其它季节没有发生突变.  相似文献   

10.
青海三江源区是全球气候变化的敏感区和生态环境脆弱区,目前正面临着冻土退化的问题。本研究基于三江源区18个国家气象站1961—2021年气象观测资料,对气候变暖前后季节冻土冻融特征进行对比分析。结果表明:三江源区年平均气温为-0.34℃,呈东高西低分布,总体以0.38℃·(10a)^(-1)的速率上升,并在1997年发生突变,突变后气温显著升高。平均年最大季节冻结深度为142.5 cm,自西北向东南减小,总体以2.4 cm·(10a)^(-1)速率退化,与变暖前相比减少了11 cm。平均地表冻结初日为10月24日,以1.0 d·(10a)^(-1)速率推迟,平均地表冻结终日为5月18日,以3.3 d·(10a)^(-1)速率提前,与变暖前相比,地表冻结终日提前了12 d,地表冻结初日推迟了14 d。季节冻土平均冻结时间为133.9 d,呈西高东低分布,总体以1.9 d·(10a)^(-1)速率减少,与变暖前相比减少了8.8 d。年最大冻结深度及冻结时间分别在2004年和2002年发生突变,相比气温均有一定滞后。这说明,季节冻土在受气温变化影响同时,还受地形、人类活动等其他因素影响。该研究揭示了三江源区季节冻土冻结作用弱化的现象,研究成果可为应对气候变化、工程建设等提供参考。  相似文献   

11.
河西走廊是丝绸之路的咽喉,区域内季节冻土路基的稳定性对亚欧大陆运输通道有重要影响。以张掖地区季节冻土路基为例,基于传热学及弹塑性变形理论探讨了路基在阴阳坡效应下的地温和变形分布;通过比较路基最大冻结深度到地下水位的距离与毛细水最大上升高度,得到河西走廊地区路基合理高度的确定方法及拟合公式,来表示其与地下水位以及年平均气温的相互关系。结果表明:张掖地区路基阴阳坡效应明显,阴坡冻结时间比阳坡长2个月;1月阴阳坡的温差最大,达到3℃;2月,路基的竖向最大位移达到26 mm,横向位移差达到6 mm;路基合理高度随年平均气温的升高而逐渐降低,随地下水位的增加而逐渐变大,其随年平均气温的变化幅度小于地下水。该研究可定性分析路基合理高度与年平均气温、地下水位的关系,为河西走廊地区定量计算路基高度提供理论参考。  相似文献   

12.
青藏高原冬春积雪和季节冻土年际变化差异的成因分析   总被引:22,自引:13,他引:9  
高荣  韦志刚  董文杰 《冰川冻土》2004,26(2):153-159
利用青藏高原上72个常规气象观测站的逐日积雪厚度、冻结深度、气温、降水和地表温度资料,分析了高原积雪和季节冻土年际变化差异的原因.结果表明:气温和地表温度对高原积雪和季节冻土都有重要的影响,而降水对积雪的影响很重要,但是对季节冻土的影响则比较小.高原积雪对季节冻土有较大的影响,在积雪达到一定厚度以后,积雪的保温作用会影响冻结深度的变化,积雪越厚,保温作用越强;积雪越浅,保温作用越弱,当积雪小于某一厚度时其主要起降温作用.积雪的保温作用可能是积雪与季节冻土年际变化差异的原因之一.  相似文献   

13.
冻结滞水形成机制的探讨   总被引:11,自引:4,他引:11  
那平山  徐树林 《冰川冻土》1996,18(3):273-278
资料表明,冻结滞水形成机制是在冬季的冻结作用下,包气滞冻土层内产生氢键吸附能,饱和水汽压差和气管薄膜等机制构成冻结势。它具用奶强的吸附能凝聚水分,全副钨气带水和潜水液态,汽态向冻结层迁移富集;形成季节性固态地下水。在冻结期间包气带水盐具有明显倒置分带性:冻结滞水带;过渡水分带;支持毛管水汽化输水带。  相似文献   

14.
刘美娇  李颖  孙美平 《冰川冻土》2020,42(3):801-811
寒潮是我国北方地区冬、 春、 秋季节常见气象灾害之一, 产生的危害严重影响社会经济发展和人们生产生活。河西走廊生态环境脆弱且处于寒潮影响的重要区域, 揭示河西走廊寒潮频次时空变化特征可以为农牧业防灾减灾提供参考。基于1961 - 2018年河西走廊12个气象站逐日最低气温数据, 采用数据统计和空间可视化表达方法, 分析近60 a河西走廊寒潮频次时空变化特征, 并探讨北极涛动(AO)异常与寒潮频次的响应关系。结果表明: 从时间上看, 河西走廊的寒潮主要发生在10月至4月, 其中11月、 12月、 4月为寒潮高发时期, 近60 a河西走廊寒潮频次呈现出下降的趋势, 其中在20世纪80年代出现明显的低值, 下降趋势在季节上表现为秋季>春季>冬季; 河西走廊寒潮发生频次具有显著的空间差异, 其中西部地区最多, 东部地区居中, 中部地区最少; 北极涛动(AO)强弱与河西走廊寒潮频次变化具有时空响应关系, 当AO处于负相位时, 河西走廊各气象站寒潮发生频次较多, 并且在河西走廊东部和西部表现的较为明显。  相似文献   

15.
新疆冬春季积雪及温度对冻土深度的影响分析   总被引:5,自引:3,他引:2  
利用新疆64个气象台站1960-2010年的气象资料,分析了新疆50 a来冻土深度的变化趋势,并讨论了温度(平均地温、平均气温)、降水(冬春季年降水、平均积雪深度)与冻土深度(平均冻土深度、最大冻土深度)的相关关系. 结果表明:以10 a时段的年代际变化分析,新疆50 a来平均冻土深度和最大冻土深度均呈明显减小趋势. 50 a来平均冻土深度全疆、北疆、南疆分别减小了约7 cm、10 cm、4 cm,最大冻土深度则分别减小了约11 cm、16 cm、9 cm. 新疆50 a来平均气温和平均地温均呈波动上升趋势,且与冻土深度均有着良好的相关性,其与平均冻土深度的相关系数分别达到了-0.67、-0.77,与最大冻土深度的相关系数也分别达到了-0.51、-0.65,地温与气温的上升对应着冻土深度的减小. 新疆冬春季年降水与冻土深度有着较好的相关性,其与平均冻土深度、最大冻土深度的相关系数分别达到了-0.40、-0.37. 新疆的平均积雪深度与冻土深度也有着一定的弱相关,其原因与积雪对地面的保温作用有关.  相似文献   

16.
冻结滞水效应及其促滑机理 ——以甘肃黑方台地区为例   总被引:1,自引:1,他引:0  
冻融期地质灾害的不断发生,愈来愈引起社会关注并被更多的学者所重视,甘肃黑方台地区冬春交接时期滑坡频发,是研究季节性冻融作用的首选之地.为了探索是否存在冻结滞水效应,揭示冻融作用诱发滑坡灾害机理,建立了气温、地温和地下水位动态等协同观测网.监测数据显示:黑方台地区存在季节性冻融现象,可划分为冻结期(秋冬)、完全冻结期(冬)、冻融期(春夏)、融化期(夏秋)的年季循环过程,也存在昼夜气温变化引起的循环冻融过程;斜坡中段冻结引起的地下水位上升了1.0m,证实了冻结滞水效应的存在.地下水模拟结果表明,冻结滞水引起斜坡坡脚水位壅高幅度超过3m,水平影响距离达到30m以上.冻结前坡体稳定系数为1.19;冻结后仅考虑冻结滞水效应引起的地下水位上升,稳定系数减小到1.09;反复冻融后,考虑黄土强度降低因素,坡体稳定系数降至0.97,说明冻结滞水效应和循环冻融的双重作用是滑坡在春季频发的根本原因.  相似文献   

17.
季节性冻土地区黄土斜坡冬春交际常发生崩塌、滑坡等地质灾害,造成了严重的生命财产损失.位于甘肃省永靖县的黄土台塬——黑方台为典型的季节性冻土地区,其3月份黄土滑坡灾害高发.通过对滑坡体的野外调查、原位监测,分析了该地区的冻融作用特征及其对斜坡土体强度的影响,证实了该地区表层土体存在显著的冻融循环作用,总结了斜坡体受冻融作用影响的宏观表现和受气温影响的斜坡表层黄土地温变化过程.在此基础上设计开展了黄土室内力学性质试验,分析了不同初始含水率对冻结黄土三轴抗剪强度参数的影响,对比分析了黄土与冻结黄土的三轴抗剪强度参数变化.由天然和饱和2种状态下的黄土经历15次冻融循环后的直剪实验得出冻融循环作用对黄土强度影响较大的结论.该结果可为冻融期黄土斜坡稳定性分析提供参考.  相似文献   

18.
1960-2003年新疆山区与平原积雪长期变化的对比分析   总被引:35,自引:17,他引:18  
崔彩霞  杨青  王胜利 《冰川冻土》2005,27(4):486-490
对新疆91个地面站44a(1960—2003年)的>0cm积雪日数、冬季最大积雪厚度、冬季降水量和冬季平均温度统计分析,结果发现:伴随着20世纪80年代以来明显的增温增湿变化,新疆积雪呈轻度增长趋势,90年代增加明显.积雪日数和厚度与冬季降水量呈正相关,但与冬季平均温度没有明显相关关系.将91个地面站分成24个山区站和67个平原站的进一步分析表明,山区积雪增幅大于平原,而平原的冬季温度和降水增幅大于山区.60年代和90年代山区和平原呈两个相反方向的同步变化(60年代少雪、少降水和降温;90年代多雪、多降水和增温),但幅度略有不同.70年代和80年代山区和平原无论积雪还是温度、降水量都呈现明显不同的变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号