首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   3篇
地球物理   1篇
地质学   9篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2016年   1篇
  2014年   2篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
在多年冻土区进行煤矿井工开采,冻土稳定性是影响煤矿开采的制约性因素。采用数值模拟方法分析煤矿井工开采对冻土环境的影响。研究结果表明,最大融深随时间呈增大趋势;沿井壁深度,最大融深逐年增加,在多年冻土与季节冻土的交界附近,最大融深增加较快。由于开采巷道横截面较小,在有效的冻土保护措施下,井壁周围多年冻土温度升高幅度不会太大,因而井工开采会对井壁周围多年冻土造成一定影响,但不会造成大面积冻土的融化变形。   相似文献   
2.
丑亚玲  郏书胜  张庆海  曹伟  盛煜 《岩土力学》2018,39(8):2715-2722
结构性是黄土的基本属性,黄土的湿陷特性与其结构性之间有着必然的联系。针对冻融作用对不同结构性黄土湿陷性的影响,以水泥作为模拟土颗粒间的联结材料制备了人工结构性土,开展了不同水泥含量的人工结构性土与相应的原状土、重塑土的湿陷试验,分析了结构性、冻融作用、初始含水率、湿重度及荷载大小对湿陷系数的影响规律。试验结果表明:冻融前后,人工结构性黄土的湿陷系数均比原状土、重塑土的湿陷系数小,且随着水泥含量的增加,湿陷系数有所减小;冻融之后,各土样的湿陷系数几乎均有所增加,但增加的程度和土样初始结构、含水率、干密度(压实系数)及竖向荷载关系密切,尤其当含水率接近最优含水率和土样为重塑土或水泥含量较低的人工结构性土时,冻融后湿陷系数增大幅度显著。在标准荷载200 kPa下,冻融前后原状土、重塑土的湿陷系数与其湿重度之间基本呈较好的线性负相关关系,而人工结构性黄土湿陷系数与湿重度之间并不呈线性关系;竖向荷载为50 kPa时,重塑黄土和5%水泥含量黄土的湿陷系数与冻融次数之间存在着较好的对数关系。以水泥作为土颗粒间联结材料,制备的人工结构性土是否能很好地代替原状土反映结构性黄土的湿陷特性,还需更进一步深入研究。  相似文献   
3.
在季节冻土区,周期性的冻结与融化作用持续改变着浅层非饱和土体的微结构和物理力学性质,从而直接影响着土与结构物之间的相互作用。土体与结构物接触面的应力-应变关系及其强度特征是确定季节冻土区基础工程承载力、安全性和分析结构与土体相互作用的基础和关键。为了更好地服务于实际工程,通过对不同含水率、不同冻融循环次数的非饱和黄土-混凝土试样进行直剪试验,并同时采用滤纸法测试相应黄土的基质吸力,获取了不同试验条件下的应力-应变关系曲线以及接触面强度参数、基质吸力随冻融循环次数的变化规律。同时,基于试验数据,建立了非饱和黄土与混凝土界面剪应力-位移-冻融循环次数的本构模型,该模型对黄土-混凝土界面经过多次冻融循环后不同压力下的剪应力-位移的关系曲线起到了很好的描述作用,为解决实际工程中季节冻土区基础承载力的数值计算提供了参考。  相似文献   
4.
露天煤矿矿坑回填对冻土恢复的影响分析   总被引:1,自引:1,他引:0  
为分析露天煤矿矿坑回填对冻土恢复的影响,采用数值模拟方法,对一定初始温度条件和不同边界条件下露天开挖回填后的冻土恢复进行预测分析。分析结果表明:填土温度对回填后冻土恢复有很大的影响,当填土温度由+2.0℃降低为-2.0℃时,冻土的恢复速率明显加快,厚度明显增大;当填土表面温度为正温时,坑底内的冻土恢复较难;当填土表面温度为负温时,坑底内的冻土恢复速率以及冻土厚度均比正温时更快更厚;随着天然地表温度的降低,冻土恢复速率与冻土厚度也逐渐加快增厚。因而,应尽量选择冷季,并对回填土体作降温处理后再进行回填,以保证冻土快速恢复并保持稳定,这样更有利于矿区的生态环境恢复。  相似文献   
5.
随着交通建设的发展,越来越多的公路要临近已有建筑物通过,而由于建设或重车通行引起的振动对周边建筑结构产生了很大的安全威胁,严重的甚至造成了建筑结构的损坏。论文通过对交通振动下建筑结构的振动控制标准和在振动中的损伤机理进行综述,系统总结了交通振动对建筑影响的方法,介绍了目前交通振动对建筑结构安全性影响的研究现状和方法,分析了减振隔振的发展现状,创新性的提出将疲劳寿命作为建筑结构振动容许值的参考依据。在总结分析现状的情况下提出目前存在的问题,给出了相关的意见和建议,可为今后的相关研究提供参考。  相似文献   
6.
在中国西北特殊气候环境下冻融作用是一种风化过程,反复改变着土体的微结构和物理性质,强烈影响着土体与结构的相互作用。针对冻融作用对盐渍土?结构接触面力学特性的影响,进行不固结不排水直剪试验,开展了冻融次数、含盐量、基质吸力等因素对非饱和氯盐渍土?钢块接触面力学性能影响的相关研究。试验结果表明,不含盐时接触面力学参数(黏聚力与内摩擦角)随冻融次数增加均先增大后减小,含盐时接触面黏聚力随冻融次数增加呈下降趋势,内摩擦角略有所增大;冻融前后接触面力学参数随着含盐量的增大先减小后增大,均存在含盐量阈值;未冻融时接触面力学参数含盐量阈值约为8%,随着冻融次数增加,该阈值有所变化;接触面基质吸力随冻融次数增加大体呈减小趋势并最终趋于稳定,随含盐量增加先减小后增大,基质吸力含盐量阈值约为10%;接触面剪应力?剪切位移分为线弹性变形阶段和强化阶段,竖向荷载较小时表现为弱硬化,未出现明显的应变软化现象。对接触面剪应力?剪切位移适用性模型进行评价发现龚帕兹模型能够与试验结果很好地吻合,据其建立了冻融作用的氯盐渍土?钢块界面力学模型,基于试验数据验证了其可靠性。  相似文献   
7.
河西走廊是丝绸之路的咽喉,区域内季节冻土路基的稳定性对亚欧大陆运输通道有重要影响。以张掖地区季节冻土路基为例,基于传热学及弹塑性变形理论探讨了路基在阴阳坡效应下的地温和变形分布;通过比较路基最大冻结深度到地下水位的距离与毛细水最大上升高度,得到河西走廊地区路基合理高度的确定方法及拟合公式,来表示其与地下水位以及年平均气温的相互关系。结果表明:张掖地区路基阴阳坡效应明显,阴坡冻结时间比阳坡长2个月;1月阴阳坡的温差最大,达到3℃;2月,路基的竖向最大位移达到26 mm,横向位移差达到6 mm;路基合理高度随年平均气温的升高而逐渐降低,随地下水位的增加而逐渐变大,其随年平均气温的变化幅度小于地下水。该研究可定性分析路基合理高度与年平均气温、地下水位的关系,为河西走廊地区定量计算路基高度提供理论参考。  相似文献   
8.
以黄土高原渭河流域西部黄土丘陵沟壑区为研究区域,建立了野外观测场地,对该区域浅层非饱和土体冻融过程及水热运移规律对气候作用的响应过程进行了研究与分析。结果表明:气温对地温及地温变幅的影响随深度增加而迅速衰减,地温振幅随深度增加按指数规律衰减且温度波的相位随深度的增加而滞后,地表下200 cm深度以内地温振幅受气温影响较大。该区域裸露地表土壤的最大冻结深度在20~50 cm之间。在土壤冻结过程中,深层土壤未冻水逐渐向冻结层运移,导致深层含水量逐渐减少。不同深度土壤冻结系数随土壤深度的增加而减小,融化系数则相反。地表下50 cm深度以内的土体含水量受降水影响波动显著。土壤含水量与温度呈相似变化,地温峰值出现的时间总滞后于土壤水分,其变异程度均随土壤深度的增加而减小。  相似文献   
9.
基于结构性的冻结黄土力学特性试验研究   总被引:1,自引:0,他引:1  
通过对重塑冻结黄土和人工结构性冻结黄土(通过对重塑黄土添加水泥获取)进行室内三轴剪切试验,研究了围压、含水量、温度、水泥含量等因素对冻结黄土力学行为的影响. 结果表明:不同试验条件下,非饱和土试样和饱和土试样的应力-应变关系呈现不同的特点. 温度和围压是影响冻土体强度的主要因素,温度越低,其破坏强度越高;非饱和土样强度随围压增大而增大,饱和土体强度受围压影响很小. 初始含水量是影响冻土体强度的另一主要因素,对非饱和土样,随着含水量的增加土体强度逐渐增高,达到某一峰值之后随含水量继续增加而减小,饱和土体强度最低. 对非饱和土样,水泥含量越高,对应的破坏强度也就越大;但对饱和土样,水泥含量对冻土的应力-应变行为及强度影响不大. 最后,提出了与所试验土体强度参数相关的综合性系数M,通过回归分析,得出了其与c和tan φ的关系,并验证了其可靠性.  相似文献   
10.
丑亚玲  盛煜  马巍 《冰川冻土》2007,29(6):977-985
用数值方法模拟了在气候持续以0.02℃·a-1速度增温下,50 a运营年限内不同走向路基的融化形态可能发生的变化趋势.计算了在砂砾路面和沥青路面下,不同高度(0~5.0 m)及不同走向(东西、东北-西南、南北、对称)路基的融化形态.结果表明:非对称热边界路基与对称热边界路基的融化形态差异很大.在呈阴阳坡的路基中,砂砾路面和沥青路面下:1)最大融化深度位置与运营时间关系不大,与路基高度、线路走向及路面类型关系密切,且最大融化深度偏离路基中线的距离与路基高度呈线性关系;2)最大融化深度与运营时间、路基高度、路面类型关系比较密切.路基较低时,最大融化深度与路基走向关系不大.路基较高时,最大融化深度与线路走向关系密切,且随着路基高度的增加、气候变暖及增温速率的增大而加剧;3)同一路基高度和线路走向下,砂砾路面的最大融化深度偏离路基中线的距离大于沥青路面的,沥青路面的最大融化深度大于砂砾路面的.相对于砂砾路面,沥青路面在一定程度上部分的抵消了阴阳坡效应,但加剧了路基下最大融化深度.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号