首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regime transitions in the meridional overturning circulation (MOC) and the rate of formation of deep and bottom waters are thought to be sensitive to changes in the freshwater flux at high latitudes. We model convective overturning in the presence of a surface freshwater input using laboratory experiments that are inverted relative to the ocean: we establish an equilibrium circulation forced by differential heating and cooling along the base of a box and perturb this flow by adding a stabilizing saltwater input at the ‘polar’ end of the box. An initially stable layer forms near the source of the salinity anomaly as a ‘polar halocline’. The subsequent circulation is governed largely by the ratio of salinity and thermal buoyancy supply. For small values of this ratio we observe periodic formation and breakdown of the halocline. Larger values of the flux ratio lead to subthermocline intrusions and stable layering laterally throughout the basin, isolating the bulk of the water column from the forcing boundary. The shutdown of deep overturning and formation of a shallow circulation occurs at a salinity buoyancy input of order 0.1 times the rate of loss of thermal buoyancy. This salinity buoyancy is then comparable to the buoyancy that forces the deep sinking plume below the thermocline in steady-state overturning. When the salinity buoyancy flux is removed, the circulation slowly returns to its original state.  相似文献   

2.
An attempt was made to reproduce the circulation pattern in Suo-Nada, Japan during spring and summer season in order to elucidate the water exchange mechanism in the basin. Two hydrographic surveys at the end of each season were conducted covering the entire Suo-Nada area. A three-dimensional hydrodynamic Princeton Ocean Model (POM) was used to compute the current resulting from the observed density and wind field. During spring, a very pronounced counter clockwise gyre is situated near the opening of the basin. This is replaced by a clockwise circulation which seemed to occupy the whole domain during summer. Within each season, however, the vertical distribution of current does not show any remarkable differences, indicating the dominance of horizontal current and a very weak estuarine flow. These observational and numerical results were used to estimate the remnant function and the corresponding average residence time of permanently dissolved matter (PDM) and transformable matter (TM). The results revealed a small difference in the average residence times of materials within each season but a large seasonal variability between spring and summer. Furthermore, calculations based on climatological density fields have indicated a similar trend of variation between the seasonal values of average residence times. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The mechanism responsible for fluid circulation in an internal basin of the Black Sea type is studied using a two-dimensional model for convective currents generated by the inhomogeneous horizontal gradient of salinity exchange. Analytical investigations and calculations have shown that the generation of cyclonic motions occurs due to an imbalance of salt fluxes at the fluid lateral boundaries of the basin. Under the influence of salt fluxes from the straits and the fresh water from rivers, the circulation tends to become streamlike. At the site of reduced salinity, the stream narrows and becomes more intensive. Translated by V. Puchkin.  相似文献   

4.
A modelling approach is proposed to evaluate the environmental dynamics of coastal lagoons. The water, heat and salt balances are addressed simultaneously, providing a better estimation of evaporation and water exchanges. Compared to traditional approaches, the model presented accounts for the effects of water salinity, heat storage and net energy advected in the water body. The model was applied daily to the Mar Menor coastal lagoon (SE Spain) from 2003 through 2006. Water exchanges with the Mediterranean Sea were estimated based on the monthly trend of the lagoon salinity and were correlated with monthly averages of wind speed. The mean daily water exchange with the sea was 1.77 hm3 d−1. This exchange accounted for only 1% of the heat losses in the lagoon heat balance, and it is the most important flow in the water balance. The mean annual evaporation flux amounted to 101.3 W m−2 (3.55 mm d−1), while the sensible heat flux amounted to 19.7 W m−2, leading to an annual Bowen ratio on the order of 0.19. To validate the model, daily water temperatures were predicted based on the daily heat balance of the water body and were compared with remote sensing data from water surface standard products.  相似文献   

5.
In time, the circulation of the Atlantic Water (AW) in the eastern basin of the Mediterranean Sea has been described differently, according to two major representations. The historical one, which began with the scheme from Nielsen in 1912 and has been refined up to the 1980s, favours a counterclockwise circulation in the whole basin, with AW flowing in its southern part as a broad flow off Libya and Egypt (from the Ionian to the Levantine subbasins), then continuing along Middle-East and Turkey before flowing back westwards. The more recent one, issued in the 1990s, favours a clockwise circulation in the northern part of the Ionian continuing offshore across the basin from the Cretan to the central part of the Levantine as the so-called “Mid-Mediterranean Jet”. This jet is depicted then as splitting both clockwise in the southeastern part of the basin and counterclockwise off Turkey (where this representation agrees with the former). Because the recent representation cannot be considered as a refinement of the historical ones, we have been interested in understanding why a given data set available to everybody is interpreted in such different ways.In the Algerian subbasin, the combined use of satellite infrared images and a significant amount of in situ data sets (hydrology and both Eulerian and Lagrangian current measurements) allowed us to solve a similar controversy. Therefore, we examined the circulation features in the eastern basin, undertaking the detailed analysis of 1000 daily and weekly composite images spanning the period 1996–2000, and of monthly composite images available since 1985. Whenever in situ observations were available, we have confronted them with the satellite thermal signatures and have shown that both are consistent. This paper focuses on the overall (basin scale) results while the detailed ones are published in an other paper. The new scheme we propose is basically a refined version of the historical ones: the circulation of AW is counterclockwise in the whole eastern basin but it is more constrained alongslope than previously thought, and the broadening historically schematised appears to be due to intense mesoscale eddies mainly generated by the instability of this circulation.  相似文献   

6.
本文利用高分辨率数值模型,以2001年秋季为例,详细分析了影响坦帕湾水交换的三种因素:潮汐、河流和风。论文共设置了三组实验,驱动力分别为潮汐,潮汐和河流,潮汐、河流和风。模拟结果显示:只有潮汐作用时,由于坦帕湾潮汐较弱,潮程较短,坦帕湾与其临近海域的水交换主要发生在湾口附近;当潮汐和河流共同作用时,由于河流和湾口海水盐度的不同形成了水平密度梯度,在其产生的水平密度梯度力的作用下,坦帕湾形成了表层流向湾外、底层流向湾内的重力环流,从而加强了坦帕湾跟其临近海域的水交换;由湾内指向湾外方向(2001年秋季平均)的风应力加强了流向湾外的表层流,同时水位梯度力发生了反转,变成了由湾口指向湾顶,这加强了流向湾内的底层流,表层流和底层流的加强最终促进了坦帕湾跟其临近海域的水交换;在航道处,水深较深瑞利数较大,该处的重力环流较强,这使得相对于两侧的浅水区,航道处的水交换能力较强。此外,文章还分析了坦帕湾水交换的空间差异,在Old Tampa Bay的西侧和北侧,滞留时间最长,水交换能力最弱。为减少海洋生态灾害发生,今后应重点加强对该地区的生态环境保护。  相似文献   

7.
The seasonal variation of water circulation in the Seto Inland Sea is investigated using a high resolution, three-dimensional numerical ocean model. The model results are assessed by comparison with long-term mean surface current and hydrographic data. The simulated model results are consistent with observations, showing a distinct summer and winter circulation patterns. In summer the sea water is highly stratified in basin regions, while it is well mixed near the straits due to strong tidal mixing there. During this period, a cold dome is formed in several basins, setting up stable cyclonic eddies. The cyclonic circulation associated with the cold dome develops from May and disappears in autumn when the surface cooling starts. The experiment without freshwater input shows that a basin-scale estuarine circulation coexists with cyclonic eddy in summer. The former becomes dominant in autumn circulation after the cold dome disappears. In winter the water is vertically well mixed, and the winter winds play a significant role in the circulation. The northwesterly winds induce upwind (downwind) currents over the deep (shallow) water, forming a “double-gyre pattern” in the Suo-Nada, two cyclonic eddies in Hiuchi-Nada, and anticyclonic circulation in Harima-Nada in vertically averaged current fields.  相似文献   

8.
The sensitivity of the North Atlantic gyre circulation to high latitude buoyancy forcing is explored in a global, non-eddy resolving ocean general circulation model. Increased buoyancy forcing strengthens the deep western boundary current, the northern recirculation gyre, and the North Atlantic Current, which leads to a more realistic Gulf Stream path. High latitude density fluxes and surface water mass transformation are strongly dependent on the choice of sea ice and salinity restoring boundary conditions. Coupling the ocean model to a prognostic sea ice model results in much greater buoyancy loss in the Labrador Sea compared to simulations in which the ocean is forced by prescribed sea ice boundary conditions. A comparison of bulk flux forced hindcast simulations which differ only in their sea ice and salinity restoring forcings reveals the effects of a mixed thermohaline boundary condition transport feedback whereby small, positive temperature and salinity anomalies in subpolar regions are amplified when the gyre spins up as a result of increased buoyancy loss and convection. The primary buoyancy flux effects of the sea ice which cause the simulations to diverge are ice melt, which is less physical in the diagnostic sea ice model, and insulation of the ocean, which is less physical with the prognostic sea ice model. Increased salinity restoring ensures a more realistic net winter buoyancy loss in the Labrador Sea, but it is found that improvements in the Gulf Stream simulation can only be achieved with the excessive buoyancy loss associated with weak salinity restoring.  相似文献   

9.
Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990.Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m3s−1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.  相似文献   

10.
The behavior of a river plume in Suo-Nada, Japan, has been studied using a primitive equation numerical model, the Princeton Ocean Model. Special attention has been paid to the current structure and behavior of the anticyclonic eddy (bulge) induced by high freshwater inflow changing on a timescale of one week. First, the freshwater is supplied from a river to a rectangular basin with a simple topography. When the river discharge subsides after reaching its peak value, the bulge propagates upstream (i.e., opposite to the direction of the Kelvin wave propagation). Next, the freshwater is supplied from eight major rivers to the basin with realistic topography. The less saline water mass in the southern part of Suo-Nada propagates to the west (i.e., upstream) after the river discharge subsides. This is consistent with an observed phenomenon, viz., that the less saline water mass appears in the western part of Suo-Nada, suggesting that the upstream propagation of the bulge is possible in the real ocean. Finally, the cause of the upstream propagation is considered. Onshore currents appear in the bottom layer beneath the bulge, propagating upstream. They produce an anticyclonic barotropic eddy due to the conservation of potential vorticity. The current component associated with the eddy crosses normally to the isohaline in the upper layer, and therefore transports the bulge upstream. No other current component (such as surface current velocity minus vertically-averaged value) is responsible for the upstream propagation of the bulge. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A hydrographic survey and a 25-hour stationary observation were carried out in the western part of Suo-Nada in the summer of 1998 to elucidate the formation mechanism of the oxygen-deficient water mass. A steep thermocline and halocline separated the upper layer water from the bottom water over the observational area except for near the Kanmon Strait. The bottom water, in comparison with the upper layer water, indicated lower temperature, higher salinity, lower dissolved oxygen, higher turbidity, and higher chlorophyll a. Turbidity in the upper layer water changed with semi-diurnal period while the bottom water turbidity showed a quarter-diurnal variation, though the M2 tidal current prevailed in both waters. From the turbidity distribution and the current variation, it is revealed that the turbidity in the upper layer water is controlled by the advection due to the M2 tidal current. On the other hand, the quarter-diurnal variation in the bottom water turbidity is caused by the resuspension of bottom sediments due to the M2 tidal current. The steep thermocline and halocline were maintained throughout the observation period in spite of the rather strong tidal currents. This implies an active intrusion of the low temperature and high salinity water from the east to the bottom of Suo-Nada. Based on the observational results, a hypothesis on the oxygen-deficient water mass formation was proposed; the periodical turbidity variation in the bottom water quickly modifies the oxygen-rich water in the east to the oxygen-deficient bottom water in Suo-Nada in a course of circulation.  相似文献   

12.
A regional eddy-resolving primitive equation circulation model was used to simulate circulation on the southeastern Bering Sea (SEBS) shelf and basin. This model resolves the dominant observed mean currents, eddies and meanders in the region, and simultaneously includes both tidal and subtidal dynamics. Circulation, temperature, and salinity fields for years 1995 and 1997 were hindcast, using daily wind and buoyancy flux estimates, and tidal forcing derived from a global model. This paper describes the development of the regional model, a comparison of model results with available Eulerian and Lagrangian data, a comparison of results between the two hindcast years, and a sensitivity analysis. Based on these hindcasts and sensitivity analyses, we suggest the following: (1) The Bering Slope Current is a primary source of large (100 km diameter) eddies in the SEBS basin. Smaller meanders are also formed along the 100 m isobath on the southeastern shelf, and along the 200-m isobath near the shelf break. (2) There is substantial interannual variability in the statistics of eddies within the basin, driven by variability in the strength of the ANSC. (3) The mean flow on the shelf is not strongly sensitive to changes in the imposed strength of the ANSC; rather, it is strongly sensitive to the local wind forcing. (4) Vertical mixing in the SEBS is strongly affected by both tidal and subtidal dynamics. Strongest mixing in the SEBS may in fact occur between the 100- and 400-m isobaths, near the Pribilof Islands, and in Unimak Pass.  相似文献   

13.
珠江伶仃河口湾及邻近内陆架的纵向环流与物质输运分析   总被引:1,自引:0,他引:1  
根据实测资料分析了珠江伶仃河口湾与邻近内陆架在不同径流影响下的水体混合空间状态和季节变化特征。主要由河口湾表、中层冲淡水和内陆架底层上溯的高盐补偿流构成了河口湾和内陆架之间的净环流,在高径流量和西南大风的情况下,环流下移向内陆架扩展增强。计算表明,7月纵断面上的净环流输运是盐分纵向净通量的控制因素,输运方向指向上游,而其余季节则以向海的净平流输运为主。悬沙净通量主要受净平流及潮抽吸输运控制,潮抽吸输运强度与大小潮有较密切关系。  相似文献   

14.
The influence of wind on the water age in the tidal Rappahannock River   总被引:1,自引:0,他引:1  
Wind plays an important role in regulating mixing/stratification, estuarine circulation, and transport timescale in estuaries. A three-dimensional model was used to investigate the effect of wind on transport time by using the concept of water age (WA) in the tidal Rappahannock River, a western tributary of the Chesapeake Bay, USA. The model was calibrated for water level, current, and salinity. A series of experiments regarding the effects of wind on WA was conducted under various dynamic conditions. The effect of wind on transport timescale depends strongly on the competition between the wind and buoyancy forcings, and on the pre-status of the circulation. A down-estuary wind generally decreases WA along the estuary. An up-estuary wind increases WA substantially because it changes the vertical mixing and estuarine circulation more significantly. When the buoyancy forcing increases, the up-estuary wind effect decreases whereas the down-estuary wind effect increases. A 2-day period wind pulse with a maximum speed of 15 m s−1 can alter WA for 3 days; but the wind influence on WA lasts up to 40 days in the simulation. Both local and non-local wind forcings alter WA distribution. The local wind enhances vertical mixing and changes the gravitational circulation in the downstream portion of the estuary whereas it enhances transport in the freshwater portion of the estuary. Consequently, the local wind has a significant impact on WA distribution. In contrast, the non-local wind does not change the gravitational circulation significantly by imposing setup (setdown) of water level at the open boundary, resulting in a lesser impact on WA distribution.  相似文献   

15.
From mean velocities measured in estuarine flows it has been found that the velocity distributions are log-linear in stratified flows and logarithmic in well-mixed flows. The results of salinity measurements reveal that the mean salinity profiles are geometrically similar and expressible as a power law. The buoyancy parameters, such as the Monin-Obukhov length scale, the gradient and the flux Richardson numbers, are independent of the flow state. The gradient and the flux Richardson numbers are almost equal, indicating the existence of a local equilibrium layer. The non-dimensional parameter describing dissipation rates of turbulent kinetic energy is a constant of 0·2 and 0·3 for stratified and well-mixed flows respectively. In well-mixed flow the drag coefficient varies with time approaching a constant of about 3·2 × 10?3 when the flow is stratified. The shape of the turbulent energy spectra are generally flatter and broader in stratified as compared with those of well-mixed flows.  相似文献   

16.
Water velocity and density profiles were obtained in late-spring and late-winter to document reversing mean circulation patterns at the entrance to a semiarid coastal lagoon, the Bay of Guaymas, in the Gulf of California, Mexico. The lagoon is shallow but the bathymetry at its entrance is similar to that of temperate estuaries with an asymmetrically positioned channel flanked by shoals. In late-spring the mean circulation at the entrance to the lagoon was driven by horizontal density gradients that arose from excess evaporation over precipitation in the area as evidenced by water density profiles. The lagoon exported relatively warm (25·8 °C) and salty (36·2) water to the Gulf of California through the channel. This export was consistent with inverse estuarine circulation influenced by bathymetry. In late-winter, the circulation at the entrance of the lagoon was mostly driven by wind stress that blew from the northwest, roughly along the main axis of the lagoon. Relatively cool (16·0) °C) and less salty (35·1) water from the Gulf of California was driven into the lagoon within the channel. Density gradients inside the lagoon seem to have played a secondary role in driving the circulation. The late-winter circulation was then estuarine-like, with outflow in the direction of the wind over the shallow areas and a compensatory inflow appearing in the channel as expected from theory of wind-driven flow over bathymetry. This estuarine-like circulation developed despite the lack of measurable freshwater input to the lagoon and was the opposite to that observed in late-spring. These observations then document a reversal in water exchange patterns from season to season in a semiarid coastal lagoon. The observations also constitute one of the few reported examples of flow over shoals driven in the same direction as the wind stress with a compensatory flow in the channel.  相似文献   

17.
The mixing and circulation associated with a bathymetrically arrested estuarine front was studied using hydrographic and current data. A quasisteady front, exhibiting strongly convergent surface flows, is formed along the steeply sloping inner margins of the flood tide delta during each semidiurnal tide cycle. This front separates the brackish ambient water within a deep estuarine basin from the incoming oceanic tidal water. The position of the front is dependent on the local water depth and the difference in density between the two water masses. Beneath the surface there is an inclined frontal interface where static stability is very low and vertical mixing intense. A vertically integrated horizontal momentum equation was derived for flow in the upper layer and an estimate made as to the value of the associated entrainment coefficient.  相似文献   

18.
K. A. Korotenko 《Oceanology》2007,47(3):313-324
A new high-resolution (<2 km) version of the DieCAST fourth-accuracy-order model for the ocean circulation is proposed for the study of the general circulation, mesoscale structures, and their variability in the Adriatic Sea. The model uses mean seasonal data on the temperature, salinity, buoyancy fluxes, and wind. The data of the COAMPS system with a 4-km resolution were used for the simulation of the sea response to the effects of various winds: Sirocco, Maestro, and two types of boras. The mean monthly runoffs from 38 rivers and mean daily runoffs from 12 main rivers throughout the year were given in the model. The conditions at the open boundary of the Strait of Otranto were given on the basis of the hierarchy of two coarser models for the Adriatic and Mediterranean seas. Due to the extremely weak dissipation and the high resolution (the mesh size is less than the baroclinic radius of deformation, 5–10 km), the model allows one to trace the development of a baroclinic instability along the Italian coast, to simulate mesoscale structures associated with the instability, and to estimate the scales of the structures. Mesoscale filaments, meanders, mushroom-like currents, fronts, and intrusions known from satellite observations were simulated and explained. The scenario of the anomalous upwelling near the Italian coast observed in the summer of 2003 was also simulated and analyzed.  相似文献   

19.
A box model of Puget Sound   总被引:1,自引:0,他引:1  
A classical two-layer box model has been used to calculate volume transports and vertical exchange coefficients for the Main Basin of Puget Sound. High river flow (January–February) and low flow (August–September) calculations, using salinity and runoff observations, show that basically two estuarine types exist within the basin under both flow conditions. Admiralty Inlet, the north entrance to the Main Basin, is similar to a partially mixed estuary with vigorous tidal mixing, so that horizontal and vertical salinity gradients are similar in winter and late summer. Within the deep main basin, two layer transports are proportional to salinity stratification and the vertical exchanges are low. Calculated summer transports are about a factor of two smaller than winter transports for the Main Basin. Model transports agree quite well with daily net transports estimated from current meters. Flushing times calculated by the model also agree with volume replacement times calculated using current meter data and by methods using oxygen deficits in the lower layer.  相似文献   

20.
Regions of the formation of the thermal front in the Baltic Sea (a direct manifestation of the lacustrine thermal bar), and its specific features, were analyzed on the basis of subsurface temperature and salinity. Data were obtained from 25 horizontal tows along sections in the southern and central parts of the Baltic Sea during spring 2010 and autumn/winter 2010/2011. The width of the front was approximately 5?C30 km, and the front lifetime was 1.5 months. Horizontal temperature ranged from 0.7 to 2.5°C; thus, the temperature gradient was one- to twofold larger than the long-term monthly mean equivalent. Analysis of hourly temperature and salinity data from the Arkona basin and at the Darss Sill, obtained at 2 m depth, indicated that the surface temperature increased during the transition through temperatures of maximum density at a rate of approximately 0.01?C0.02°C/h between 3?C5 days; which is 1.4- to 5-fold higher than values before and after this period. The thermal front simultaneously propagated along the main sea axis (due to the significant salinity and buoyancy flux variations from south to north), and from the shallow parts towards the deep parts of the Baltic Sea. Therefore, the horizontal advection of the cold/warm waters clearly contributes to the speed increase of the thermal front at the end of the respective season. The speed of the thermal front propagation from south to north was approximately 28 km/day at the end of the spring period of 2010 (based on field data). This was considerably higher in comparison with the typical values of the lacustrine thermal bar speeds; however, it accords with estimates for a basin with depth/salinity horizontal variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号