首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
An attempt is made to evaluate the impact of the three dimensional variational (3DVAR) data assimilation within the Weather Research Forecasting (WRF) modeling system to simulate two heavy rainfall events which occured on 26–27 July 2005 and 27–30 July 2006. During the 26–27 July 2005 event, the unprecedented localized intense rainfall 90–100 cm was recorded over the northeast parts of Mumbai city; however, southern parts received only 10 cm. Model simulation with the data assimilation experiment is reasonably well predicted for the rainfall intensity (800 mm) in 24 h and with accurate location over Mumbai agreeing with observation. Divergence, vorticity, vertical velocity and moisture parameters are evaluated during the various stages of the event. It is noticed that maximum convergence and vorticity during the mature stage; at the same time the vertical velocity also follows a similar trend during the period in the assimilation experiment. Vorticity budget terms over the location of heavy rainfall revealed that the contribution of the positive tilting term produced positive vorticity which triggered the convection and negative contribution to vorticity from the tilting term to precede the dissipation of the system. Model simulations from the second rain event, the off-shore trough at sea level along the west coast of India, is well represented after assimilation of observations during day-1 and day-2 as compared to the control simulations; the orientation of the off-shore trough is well matched with that of the observed. The intensity and spatial distribution of the rainfall has considerably improved in the assimilation simulation. The statistical skill scores also revealed that the precipitation forecast during the period has appreciably improved due to assimilation of observations. The results of this study indicate a positive impact of the 3DVAR assimilation on the simulation of heavy rainfall events.  相似文献   

2.
An explicit four-dimensional variational data assimilation method   总被引:2,自引:0,他引:2  
A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial structure of the analysis variables but also the temporal evolution. After the analysis variables are ex-pressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost func-tion with respect to the control variables, is no longer needed. The new technique significantly simpli-fies the data assimilation process. The advantage of the proposed method is demonstrated by several experiments using a shallow water numerical model and the results are compared with those of the conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 4DVAR is better than the proposed method. However, when the observation points are sparse, the proposed method performs better. The sensitivity of the proposed method with respect to errors in the observations and the numerical model is lower than that of the conventional method.  相似文献   

3.
Data assimilation combines atmospheric measurements with knowledge of atmospheric behavior as codified in computer models, thus producing a “best” estimate of current conditions that is consistent with both information sources. The four major challenges in data assimilation are: (1) to generate an initial state for a computer forecast that has the same mass-wind balance as the assimilating model, (2) to deal with the common problem of highly non-uniform distribution of observations, (3) to exploit the value of proxy observations (of parameters that are not carried explicitly in the model), and (4) to determine the statistical error properties of observing systems and numerical model alike so as to give each information source the proper weight. Variational data assimilation is practiced at major meteorological centers around the world. It is based upon multivariate linear regression, dating back to Gauss, and variational calculus. At the heart of the method is the minimization of a cost function, which guarantees that the analyzed fields will closely resemble both the background field (a short forecast containing a priori information about the atmospheric state) and current observations. The size of the errors in the background and the observations (the latter, arising from measurement and non-representativeness) determine how close the analysis is to each basic source of information. Three-dimensional variational (3DVAR) assimilation provides a logical framework for incorporating the error information (in the form of variances and spatial covariances) and deals directly with the problem of proxy observations. 4DVAR assimilation is an extension of 3DVAR assimilation that includes the time dimension; it attempts to find an evolution of model states that most closely matches observations taken over a time interval measured in hours. Both 3DVAR and, especially, 4DVAR assimilation require very large computing resources. Researchers are trying to find more efficient numerical solutions to these problems. Variational assimilation is applicable in the upper atmosphere, but practical implementation demands accurate modeling of the physical processes that occur at high altitudes and multiple sources of observations.  相似文献   

4.
Mapping radar-derived sea surface currents with a variational method   总被引:1,自引:0,他引:1  
High-frequency radars measure projections of surface velocity vectors on the directions of the radar beams. A variational method for reconstruction of the 2d velocity field from such observations is proposed. The interpolation problem is regularized by penalizing high-frequency variability of the surface vorticity and divergence fields. Twin-data experiments are used to assess the method's skill and compare it with two well-known approaches to HFR data processing: conventional local interpolation and more sophisticated non-local scheme known as open-boundary modal analysis (OMA). It is shown that the variational method and OMA have a significant advantage over local interpolation because of their ability to reconstruct the velocity field within the gaps in data coverage, near the coastlines and in the areas covered only by one radar. Compared to OMA, the proposed variational method appears to be more flexible in processing gappy observations and more accurate at noise levels below 30%.  相似文献   

5.
The present study investigates the reconstruction of the 3D dynamics of a turbulent mesoscale eddy field driven at a depth by a baroclinic instability of the Phillips type. It uses a high-resolution primitive equation simulation as a testbed. The method of reconstruction is based on potential vorticity principles and extends an earlier approach (Lapeyre and Klein, J Phys Oceanogr 36:165–176, 2006) to a regime where the signature of surface density anomalies on the dynamics is weak. The crux and the originality of the reconstruction lie in the estimation from sea surface height and surface density anomalies of the interior quasigeostrophic potential vorticity (PV) anomalies and its subsequent inversion. The estimation of PV anomalies relies on the vertical correlation between PV anomalies and on the knowledge on stratification and horizontal gradients of background PV. PV anomalies are accurately estimated over the first 500 m of the water column and over a wide range of wavenumbers. Density anomalies play a minor role in the PV estimation, though their omission leads to an overestimation of PV by a factor of less than 2 at scales of order 20 km and less. Inversion of the estimated PV leads to a geostrophic streamfunction which in turn provides reliable reconstructions of the relative vorticity and vertical velocity (via the omega equation).  相似文献   

6.
An attempt is made to evaluate the impact of Doppler Weather Radar (DWR) radial velocity and reflectivity in Weather Research and Forecasting (WRF)-3D variational data assimilation (3DVAR) system for prediction of Bay of Bengal (BoB) monsoon depressions (MDs). Few numerical experiments are carried out to examine the individual impact of the DWR radial velocity and the reflectivity as well as collectively along with Global Telecommunication System (GTS) observations over the Indian monsoon region. The averaged 12 and 24 h forecast errors for wind, temperature and moisture at different pressure levels are analyzed. This evidently explains that the assimilation of radial velocity and reflectivity collectively enhanced the performance of the WRF-3DVAR system over the Indian region. After identifying the optimal combination of DWR data, this study has also investigated the impact of assimilation of Indian DWR radial velocity and reflectivity data on simulation of the four different summer MDs that occurred over BoB. For this study, three numerical experiments (control no assimilation, with GTS and GTS along with DWR) are carried out to evaluate the impact of DWR data on simulation of MDs. The results of the study indicate that the assimilation of DWR data has a positive impact on the prediction of the location, propagation and development of rain bands associated with the MDs. The simulated meteorological parameters and tracks of the MDs are reasonably improved after assimilation of DWR observations as compared to the other experiments. The root mean square errors (RMSE) of wind fields at different pressure levels, equitable skill score and frequency bias are significantly improved in the assimilation experiments mainly in DWR assimilation experiment for all MD cases. The mean Vector Displacement Errors (VDEs) are significantly decreased due to the assimilation of DWR observations as compared to the CNTL and 3DV_GTS experiments. The study clearly suggests that the performance of the model simulation for the intense convective system which influences the large scale monsoonal flow is significantly improved after assimilation of the Indian DWR data from even one coastal locale within the MDs track.  相似文献   

7.
The spatio-temporal variability of submesoscale eddies off southern San Diego is investigated with two-year observations of subinertial surface currents [O(1) m depth] derived from shore-based high-frequency radars. The kinematic and dynamic quantities — velocity potential, stream function, divergence, vorticity, and deformation rates — are directly estimated from radial velocity maps using optimal interpolation. For eddy detection, the winding-angle approach based on flow geometry is applied to the calculated stream function. A cluster of nearly enclosed streamlines with persistent vorticity in time is identified as an eddy. About 700 eddies were detected for each rotation (clockwise and counter-clockwise). The two rotations show similar statistics with diameters in the range of 5–25 km and Rossby number of 0.2–2. They persist for 1–7 days with weak seasonality and migrate with a translation speed of 4–15 cm s−1 advected by background currents. The horizontal structure of eddies exhibits nearly symmetric tangential velocity with a maximum at the defined radius of the eddy, non-zero radial velocity due to background flows, and Gaussian vorticity with the highest value at the center. In contrast divergence has no consistent spatial shape. Two episodic events are presented with other in situ data (subsurface current and temperature profiles, and local winds) as an example of frontal-scale secondary circulation associated with drifting submesoscale eddies.  相似文献   

8.
The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.  相似文献   

9.
This study is diagnostic in character and entails a systematic investigation of the kinematic parameters of the mean monthly 300 mb horizontal-motion field for the global tropical region during January, April, and October. The kinematic parameters analysed include the horizontal velocity divergence, relative vorticity, velocity potential, and stream function. The magnitude of relative voritcity has been observed to be nearly equal to that of the horizontal velocity divergence in the equatorial latitudes and an order of magnitude larger in the subtropics. The magnitudes of?u/?x, ?v/?y, and horizontal velocity divergence are comparable and vary very little with latitude, while that of?u/?y is an order of magnitude larger than that of?v/?x, confirming its dominance in the computation of relative vorticity. The latitudinal position of zero absolute vorticity isopleth fluctuates within 5 degrees of the equator and is confined more to the winter hemisphere than to the summer hemisphere. The rotational component of wind is large compared with the divergent wind component. The magnitude of the rotational vector wind is four times that of the divergent vector wind in the equatorial latitudes and an order of magnitude larger in the subtropical latitudes.  相似文献   

10.
ABSTRACT

A framework of variational principles for stochastic fluid dynamics was presented by Holm, and these stochastic equations were also derived by Cotter, Gottwald and Holm. We present a conforming finite element discretisation for the stochastic quasi-geostrophic equation that was derived from this framework. The discretisation preserves the first two moments of potential vorticity, i.e. the mean potential vorticity and the enstrophy. Following the work of Dubinkina and Frank, who investigated the statistical mechanics of discretisations of the deterministic quasi-geostrophic equation, we investigate the statistical mechanics of our discretisation of the stochastic quasi-geostrophic equation. We compare the statistical properties of our discretisation with the Gibbs distribution under assumption of these conserved quantities, finding that there is an agreement between the statistics under a wide range of set-ups.  相似文献   

11.
The characteristics of the disturbances in the atmosphere and oceans and in other stably stratified and rotating fluids are analyzed according to their phase and group velocities. It is shown that both stable stratification and rotation augment the velocity of the sound waves, and that the internal gravity waves and inertial waves are mutually exclusive when the Brunt-Väisälä frequency is different from the Coriolis parameter. It is also shown that both the barotropic and the internal Rossby waves are well separated from the gravity waves and that they can be represented accurately by the quasi-geostrophic potential vorticity equation, even close to the equator, except for the one member withn=0 which is coupled with an eastward propagating gravity wave.  相似文献   

12.
A three-dimensional variational(3DVAR) data assimilation(DA) system is presented here based on a size-resolved sectional aerosol model, the Model for Simulating Aerosol Interactions and Chemistry(MOSAIC) within the Weather Research and Forecasting model coupled to Chemistry(WRF-Chem) model. The use of this approach means that both gaseous pollutants such as SO_2, NO_2, CO, and O_3 as well as particulate matter(PM_(2.5), PM_(10)) observational data can be assimilated simultaneously.Two one-month parallel simulation experiments were conducted, one with the assimilation of surface hourly concentration observations of the above six pollutants released by the China National Environmental Monitoring Centre(CNEMC) and one without assimilation in order to verify the impact of assimilation on initial chemical fields and subsequent forecasts. Results show that, in the first place, use of the DA system can provide a more accurate model initial field. The root-mean-square error of PM_(2.5), PM_(10), SO_2, NO_2, CO, and O_3 mass concentrations in analysis field fell by 29.27 μg m~(-3)(53.5%), 34.5 μg m~(-3)(50.9%),30.36 μg m~(-3)(64.2%), 8.91 μg m~(-3)(39.5%), 0.46 mg m~(-3)(47.4%), and 15.11 μg m~(-3)(51.0%), respectively, compared to a background field without assimilation. At the same time, mean fraction error was reduced by 42.6%, 53.1%, 45.2%, 43.1%,69.9%, and 48.8%, respectively, while the correlation coefficient increased by 0.51, 0.55, 0.48, 0.38, 0.47, 0.65, respectively.Secondly, the results of this analysis reveal variable benefits from assimilation on different pollutants. DA significantly improves PM_(2.5), PM_(10), and CO forecasts leading to positive effects that last more than 48 h. The positive effects of DA on SO_2 and O_3 forecasts last up to 8 h but that remains relatively poor for NO_2 forecasts. Thirdly, the influence of assimilation varies in different areas. It is possible that the positive effects of DA on PM_(2.5) and PM_(10) forecasts can last more than 48 h across most regions of China. Indeed, DA significantly improves SO_2 forecasts within 48 h over north China, and much longer CO assimilation benefits(48 h) are found in most regions apart from north and east China and across the Sichuan Basin. DA is able to improve O_3 forecasts within 48 h across China with the exception of southwest and northwest regions and the O_3 DA benefits in southern China are more evident, while from a spatial distribution perspective, NO_2 DA benefits remain relatively poor.  相似文献   

13.
A new 3DVAR-based Ocean Variational Analysis System (OVALS) is developed. OVALS is capable of assimilating in situ sea water temperature and salinity observations and satellite altimetry data. As a component of OVALS, a new variational scheme is proposed to assimilate the sea surface height data. This scheme considers both the vertical correlation of background errors and the nonlinear temperature-salinity relationship which is derived from the generalization of the linear balance constraints to the nonlinear in the 3DVAR. By this scheme, the model temperature and salinity fields are directly adjusted from the altimetry data. Additionally, OVALS can assimilate the temperature and salinity profiles from the ARGO floats which have been implemented in recent years and some temperature and salinity data such as from expendable bathythermograph, moored ocean buoys, etc. A 21-year assimilation experiment is carried out by using OVALS and the Tropical Pacific circulation model. The results show that the assimilation system may effectively improve the estimations of temperature and salinity by assimilating all kinds of observations. Moreover, the root mean square errors of temperature and salinity in the upper depth less than 420 m reach 0.63℃ and 0.34 psu.  相似文献   

14.
In this paper the impact of Doppler weather radar (DWR) reflectivity and radial velocity observations for the short range forecasting of a tropical storm and associated rainfall event have been examined. Doppler radar observations of a tropical storm case that occurred during 29–30 October 2006 from SHARDWR (13.6° N, 80.2° E) are assimilated in the WRF 3DVAR system. The observation operator for radar reflectivity and radial velocity is included within latest version of WRF 3DVAR system. Keeping all model physics the same, three experiments were conducted at a horizontal resolution of 30?km. In the control experiment (CTRL), NCEP Final Analysis (FNL) interpolated to the model grid was used as the initial condition for 48-h free forecast. In the second experiment (NODWR), 6-h assimilation cycles have been carried out using all conventional (radiosonde and surface data) and non-conventional (satellite) observations from the Global Telecommunication System (GTS). The third experiment (DWR) is the same as the second, except Doppler radar radial velocity and reflectivity observations are also used in the assimilation cycle. Continuous 6-h assimilation cycle employed in the WRF-3DVAR system shows positive impact on the rainfall forecast. Assimilation of DWR data creates several small scale features near the storm centre. Additional sensitivity experiments were conducted to study the individual impact of reflectivity and radial velocity in the assimilation cycle. Radar data assimilation with reflectivity alone produced large analysis response on both thermodynamical and dynamical fields. However, radial velocity assimilation impacted only on dynamical fields. Analysis increments with radar reflectivity and radial velocity produce adjustments in both dynamical and thermodynamical fields. Verification of QPF skill shows that radar data assimilation has a considerable impact on the short range precipitation forecast. Improvement of the QPF skill with radar data assimilation is more clearly seen in the heavy rainfall (for thresholds >7?mm) event than light rainfall (for thresholds of 1 and 3?mm). The spatial pattern of rainfall is well simulated by the DWR experiment and is comparable to TRMM observations.  相似文献   

15.
Fluid flow below the core-mantle boundary is inferred from geomagnetic secular variation data, assuming frozen magnetic flux and a new physical assumption termed helical flow, in which the tangential divergence correlates with the radial vorticity. Helical flow introduces streamfunction diffusion and removes non-uniqueness in the inversion of the magnetic induction equation. We combine helical flow with tangential geostrophy and compare the following physical assumptions: tangential geostrophy, strong helicity, weak helicity and columnar flow, using geomagnetic field models from the 2000 Oersted and 1980 Magsat satellites. Our solutions contain some features found in previous core flow models, such as large mid-latitude vortices, westward drift in most of the southern hemisphere, and suggested polar vortices. However, our solutions contain significantly more flow along contours of the radial magnetic field than previous core flow models.  相似文献   

16.
Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant-Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation.  相似文献   

17.
The western boundary current in the southern South China Sea (SCS) in summer does not always flow northward along the Indo-China Peninsula, it leaves the southeast coast of peninsula around 10–14°N, forming a strong eastward jet called “Vietnam Coastal Current” or “Southeast Vietnam Offshore Current” (SVOC). It is known that the wind stress curl is the major driving factor responsible for this current. In this paper, we carry on the study of the separation position, strength and forming time of this current. A connected single-layer/two-layer model is employed here to study these problems. According to the numerical experiments and analyses of the vorticity dynamics, it is found that, the local wind stress curl (including the northern cyclonic and the southern anticyclonic wind forcing curl), the nonlinear term, the topographic effect, the planetary vorticity advection and the water exchange between the SCS and Java Sea via the Sunda Shelf have an important effect on both the position where this current leaves the coast and its strength; when there is an inflow via the Sunda Shelf, the current is stronger and the separation position is more northward; whereas the water stratification, the coastline and the inflow of Kuroshio have little effect on its separation. In fact, two opposite flowing currents, the northward SVOC and the southward western branch of the cyclonic eddy to its north near the Indo-China Peninsula, collide with each other, and the strength of these two currents determine the separation position of the SVOC. Origin of the SVOC may be driven by the local negative wind stress curl in the middle SCS in mid-spring, this current flows along the coast of the Indo-China Peninsula and leaves the coast at high latitude, flowing northeastward; once the local positive wind stress curl near the northern Indo-China Peninsula or the negative one near the southern Indo-China Peninsula is large enough, this current will begin to leave the coast at low latitude.  相似文献   

18.
In consideration of the characteristics of spectral average of the Rossby wave trains and the adoption of a climatic mean stream field as the basic stream field, an approximate analytical formula for the period of atmospheric low-frequency oscillation (LFO) and the group velocity is deduced from a barotropic and non-divergent linearized vorticity equation. All the action centers of atmosphere are found to be the oscillators of low frequency. The LFO propagates southward across the streamlines in the wind field with a southward component or propagates northward across the streamlines in the wind field with northward component instead of along a great circle. The switch of the propagation direction takes place near the top of ridge or the bottom of trough. The angle between the wave rays and the zonal direction can be determined. Project supported by the National Natural Science Foundation of China (Grant No. 49175241).  相似文献   

19.
Teleseismic P-wave receiver functions at 20 broadband seismic stations in the Longmenshan fault zone (LMFZ) and its vicinity were extracted, and the crustal thickness and the P- and S-wave velocity ratio were calculated by use of the H-k stacking algorithm. With the results as constraints, the S-wave velocity structures beneath each station were determined by the inversion of receiver functions. The crustal structure of the Rear-range zone is similar to that of the Songpan-Garze Block, whereas the velocity structure of the Fore-range zone resembles that of Sichuan Basin, implying that the Central Principal Fault of LMFZ is the boundary between the eastern Tibetan Plateau and the Yangtze Block. Lower velocity zone exists in lower crust of the Songpan-Garze Block and the central-southern segment of the Rear-range zone, which facilitates the detachment of the material in upper and middle crust. Joint analysis of the receiver functions and the Bouguer gravity anomalies supports the thesis on the detachment-thrust mode of the LMFZ. A double-detachment pattern is suggested to the tectonic setting in the Songpan-Garze Block. The upper detachment occurs at the depth of 10-15 km, and represents a high-temperature ductile shear zone. There is a lower detachment at the depth of about 30 km, below which the lower crust flow exists in the eastern Tibetan Plateau. Interpretation of the Bouguer gravity anomalies indicates that the Sichuan Basin is of higher density in upper and middle crust in comparison with that of the Songpan-Garze Block. The LMFZ with higher density is the result from the thrusting of the Songpan-Garze Block over the Sichuan Basin. In the lower crust, higher P velocity and higher density in the Sichuan Basin are related to more rigid material, while lower S velocity and lower density in the Songpan-Garze Block are related to the softened and weakened material. The higher density block beneath the Sichuan Basin obstructs the eastward flow of lower crustal material from the Tibetan Plateau, which is driven by the compression of northward movement of Indian Plate. The eastward movement of upper and middle crustal material is also obstructed by the rigid Yangtze Block, resulting in the stress concentrated and accumulated along the LMFZ. When the stress releases sharply, the Wenchuan M s8.0 earthquake occurs. Supported by the National Natural Science Foundation of China (Grant Nos. 40334041, 40774037) and Joint Foundation of Earthquake Science (Grant No. 1040062)  相似文献   

20.
磁暴期内夜间h’F的突增现象   总被引:3,自引:1,他引:2       下载免费PDF全文
用3个经度链上电离层垂测站资料分析磁暴时夜间h'F的同时突增现象提出了电动耦合在夜间出现东向电场从而使F层抬升的物理机制同时也解释了突增现象在午夜后更多,且增幅更强的事实.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号