首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   2篇
  国内免费   2篇
测绘学   5篇
大气科学   21篇
地球物理   29篇
地质学   40篇
海洋学   5篇
天文学   11篇
自然地理   2篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   10篇
  2016年   10篇
  2015年   3篇
  2014年   8篇
  2013年   9篇
  2012年   11篇
  2011年   7篇
  2010年   5篇
  2009年   9篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
1.
In this study, we examined the distribution of polycyclic aromatic hydrocarbons (PAHs) in a contaminated coastal area and the characteristics of the natural organic matter in tandem. We present a detailed study of PAH concentration, distribution, and organic matter characteristics of three core samples from Pensacola Bay, Florida. Solid-state 13C Nuclear Magnetic Resonance (NMR), pyrolysis gas chromatography coupled with mass spectrometry (GC-MS), and tetramethyl ammonium hydroxide (TMAH) thermochemolysis GC-MS were applied to obtain structural details about the sedimentary organic matter. Elemental compositions (carbon and nitrogen) and estimates of black carbon contents are also reported. These coastal sediments were found to contain more PAHs in the upper 15 cm layers than in the bottom 15-25 cm samples. The samples that contained the most PAHs also contained the least amount of aromatic carbon and contained a significant amount of paraffinic carbon. Lignin-derived pyrolysis and TMAH thermochemolysis products were abundant and generally higher in all of the samples in comparison to those reported for modern coastal sediments, indicating a large flux of terrestrial carbon. The black carbon contents were found to range from 4.3% to 6.8%, which are significantly lower than other reports of black carbon in sediments, which represent as much as 65% of the total organic carbon content. The low black carbon content suggests that this type of refractory carbon may not be as responsible for regulating PAH distribution as indicated by other researchers.  相似文献   
2.
Flood disasters and its consequent damages are on the rise globally. Pakistan has been experiencing an increase in flood frequency and severity along with resultant damages in the past. In addition to the regular practices of loss and damage estimation, current focus is on risk assessment of hazard-prone communities. Risk measurement is complex as scholars engaged in disaster science and management use different quantitative models with diverse interpretations. This study tries to provide clarity in conceptualizing disaster risk and proposes a risk assessment methodology with constituent components such as hazard, vulnerability (exposure and sensitivity) and coping/adaptive capacity. Three communities from different urban centers in Pakistan have been selected based on high flood frequency and intensity. A primary survey was conducted in selected urban communities to capture data on a number of variables relating to flood hazard, vulnerability and capacity to compute flood risk index. Households were categorized into different risk levels, such as can manage risk, can survive and cope, and cannot cope. It was found that risk levels varied significantly across the households of the three communities. Metropolitan city was found to be highly vulnerable as compared to smaller cities due to weak capacity. Households living in medium town had devised coping mechanisms to manage risk. The proposed methodology is tested and found operational for risk assessment of flood-prone areas and communities irrespective of locations and countries.  相似文献   
3.
Spatially homogeneous and anisotropic LRS Bianchi type-I string cosmological models are studied in the frame work of general relativity when the source for the energy momentum tensor is a bulk viscous fluid containing one dimensional strings. A barotropic equation of state for the pressure and density is assumed to get determinate solutions of the field equations. The bulk viscous pressure is assumed to be proportional to the energy density. The physical and kinematical properties of the models are discussed. The role of bulk viscosity in getting an inflationary phase in the universe is studied.  相似文献   
4.
Hypsometric analysis of watershed (area-elevation analysis) has generally been used to reveal the stages of geomorphic development (stabilized, mature and young). The geologic stages of development and proneness of the watersheds for erosion are quantified by hypsometric integral. The estimation of hypsometric integral is carried out from the graphical plot of the measured contour elevation and encompassed area by using empirical formulae. In this study, efforts were made to estimate the hypsometric integral values of Shakkar river watershed which is a tributary of Narmada river located in Madhya Pradesh. The watershed was delineated into eight sub-watersheds and hypsometric analysis was carried out for all of them using digital contour maps, which was generated using Arc/Info GIS. The hypsometric integral values for all the sub-watersheds of Shakkar river ranges between 0.47 and 0.51. In the study area, only mature stage of erosion cycle is identified.  相似文献   
5.
This study assesses the impact of Doppler weather radar (DWR) data (reflectivity and radial wind) assimilation on the simulation of severe thunderstorms (STS) events over the Indian monsoon region. Two different events that occurred during the Severe Thunderstorms Observations and Regional Modeling (STORM) pilot phase in 2009 were simulated. Numerical experiments—3DV (assimilation of DWR observations) and CNTL (without data assimilation)—were conducted using the three-dimensional variational data assimilation technique with the Advanced Research Weather Research and Forecasting model (WRF-ARW). The results show that consistent with prior studies the 3DV experiment, initialized by assimilation of DWR observations, performed better than the CNTL experiment over the Indian region. The enhanced performance was a result of improved representation and simulation of wind and moisture fields in the boundary layer at the initial time in the model. Assimilating DWR data caused higher moisture incursion and increased instability, which led to stronger convective activity in the simulations. Overall, the dynamic and thermodynamic features of the two thunderstorms were consistently better simulated after ingesting DWR data, as compared to the CNTL simulation. In the 3DV experiment, higher instability was observed in the analyses of thermodynamic indices and equivalent potential temperature (θ e) fields. Maximum convergence during the mature stage was also noted, consistent with maximum vertical velocities in the assimilation experiment (3DV). In addition, simulated hydrometeor (water vapor mixing ratio, cloud water mixing ratio, and rain water mixing ratio) structures improved with the 3DV experiment, compared to that of CNTL. From the higher equitable threat scores, it is evident that the assimilation of DWR data enhanced the skill in rainfall prediction associated with the STS over the Indian monsoon region. These results add to the body of evidence now which provide consistent and notable improvements in the mesoscale model results over the Indian monsoon region after assimilating DWR fields.  相似文献   
6.
7.
Rocheta  Eytan  Evans  Jason P.  Sharma  Ashish 《Climate Dynamics》2020,55(9-10):2511-2521
Climate Dynamics - Regional climate models (RCM) are an important tool for simulating atmospheric information at finer resolutions often of greater relevance to local scale climate change impact...  相似文献   
8.
The regional monsoons of the world have long been viewed as seasonal atmospheric circulation reversal—analogous to a thermally-driven land-sea breeze on a continental scale. This conventional view of monsoons is now being integrated at a global scale and accordingly, a new paradigm has emerged which considers regional monsoons to be manifestations of global-scale seasonal changes in response to overturning of atmospheric circulation in the tropics and subtropics, and henceforth, interactive components of a singular Global Monsoon (GM) system. The paleoclimate community, however, tends to view ‘paleomonsoon’ (PM), largely in terms of regional circulation phenomena. In the past decade, many high-quality speleothem oxygen isotope (δ18O) records have been established from the Asian Monsoon and the South American Monsoon regions that primarily reflect changes in the integrated intensities of monsoons on orbital-to-decadal timescales. With the emergence of these high-resolution and absolute-dated records from both sides of the Equator, it is now possible to test a concept of the ‘Global-Paleo-Monsoon’ (GPM) on a wide-range of timescales. Here we present a comprehensive synthesis of globally-distributed speleothem δ18O records and highlight three aspects of the GPM that are comparable to the modern GM: (1) the GPM intensity swings on different timescales; (2) their global extent; and (3) an anti-phased inter-hemispheric relationship between the Asian and South American monsoon systems on a wide range of timescales.  相似文献   
9.
Theoretical and Applied Climatology - Indian summer monsoon rainfall (ISMR) variability of ± 10% of its long-term mean leads to flood and drought, affecting the life and economic...  相似文献   
10.
In the present study, a semi‐distributed hydrological model soil and water assessment tool (SWAT) has been employed for the Ken basin of Central India to predict the water balance. The entire basin was divided into ten sub basins comprising 107 hydrological response units on the basis of unique slope, soil and land cover classes using SWAT model. Sensitivity analysis of SWAT model was performed to examine the critical input variables of the study area. For Ken basin, curve number, available water capacity, soil depth, soil evaporation compensation factor and threshold depth of water in the shallow aquifer (GWQ_MN) were found to be the most sensitive parameters. Yearly and monthly calibration (1985–1996) and validation (1997–2009) were performed using the observed discharge data of the Banda site in the Ken basin. Performance evaluation of the model was carried out using coefficient of determination, Nash–Sutcliffe efficiency, root mean square error‐observations standard deviation ratio, percent bias and index of agreement criterion. It was found that SWAT model can be successfully applied for hydrological evaluation of the Ken basin, India. The water balance analysis was carried out to evaluate water balance of the Ken basin for 25 years (1985–2009). The water balance exhibited that the average annual rainfall in the Ken basin is about 1132 mm. In this, about 23% flows out as surface run‐off, 4% as groundwater flow and about 73% as evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号