首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near‐surface cavities can pose serious hazards to human safety, especially in highly urbanized town centres. The location of subsurface voids, the estimation of their size and the evaluation of the overburden thickness are necessary to assess the risk of collapse. In this study, electrical resistivity tomography (ERT) and seismic refraction tomography data are integrated in a joint interpretation process for cavity location in the city of Rome. ERT is a well established and widely employed method for cavity detection. However, additional information provided by seismic refraction tomography is capable of eliminating some potential pitfalls in resistivity data interpretation. We propose that the structure of the cavities defined by ERT can be used as a base to optimize seismic refraction tomography investigations within the framework of a joint interpretation process. Data integration and the insertion of a priori information are key issues for reducing the uncertainties associated with the inversion process and for optimizing both acquisition procedures and computation time. Herein, the two geophysical methods are tested on both synthetic and real data and the integration of the results is found to be successful in detecting isolated cavities and in assessing their geometrical characteristics. The cavity location inferred by geophysical non‐invasive methods has been subsequently confirmed by direct inspection.  相似文献   

2.
地面电磁法在实际工作中在很大程度上受到了探测深度和分辨率的限制.为了克服这些缺点,出现了井间电磁法.井间电磁法指的是在两个(或多个)钻孔中分别发射或接收电磁波信号,利用电磁波信号进行成像并探测井间物理性质的地球物理方法.由于发射机和接收机可以分别放置在很深钻孔中,其具有大透距、大探测深度的特点,因而广泛应用于工程环境物探、矿产勘查、石油勘探等中.针对不同的应用,产生了各具特点的一些特殊方法,包括井间无线电波成像、跨孔雷达、井间电磁成像.井间无线电波成像仪目前只测量电场强度数据,工作频率低,一般是单频的电磁波,频率范围通常在1 kHz至10 MHz.由于缺少走时数据修正射线路径,井间无线电波成像主要是进行基于直射线追踪的衰减层析成像.井间无线电波成像既可用于工程与环境地球物理也可用于找矿.跨孔雷达是钻孔雷达的一种探测方式,用高频电磁脉冲探测两个井孔间介电常数和电导率的变化.跨孔雷达层析成像也叫地质雷达CT,既可进行走时成像,还可进行衰减成像.一般来说,地质雷达CT的电磁波工作频率较高,中心频率通常在10 MHz和1 GHz之间,因此在分辨率指标上占有优势,跨孔雷达主要用于工程与环境地球物理.井间电磁成像采用更低的频率,测量复电磁信号,适合油气储集层监测,是一种地球物理前沿技术.经过在多个试验区初步试验表明,井间电磁成像是油藏研究的有效手段,可用于分析剩余油分布,寻找油气富集区,进而达到提高钻探高效井成功率和提高采收率的目的.本文详细介绍对比了这三种方法在理论和实践中的一些特点,并对未来的发展进行了展望.  相似文献   

3.
Geotechnical projects usually rely on traditional sounding and drilling investigations. Drilling only provides point information and the geology needs to be interpolated between these points. Near surface geophysical methods can provide information to fill those gaps. Norwegian case studies are presented to illustrate how two-dimensional electrical resistivity tomography (ERT) can be used to accurately map the extent of quick clay deposits. Quick clay may be described as highly sensitive marine clay that changes from a relatively stiff condition to a liquid mass when disturbed. Quick clay slides present a geo-hazard and therefore layers of sensitive clay need to be mapped in detail. They are usually characterized by higher resistivity than non-sensitive clay and ERT is therefore a suitable approach to identify their occurrence. However, our experience shows that ERT cannot resolve this small resistivity contrast near large anomalies such as a bedrock interface. For this reason, a constrained inversion of ERT data was applied to delineate quick clay extent both vertically and laterally. As compared to the conventional unconstrained inversions, the constrained inversion models exhibit sharper resistivity contrasts and their resistivity values agree better with in situ measurements.  相似文献   

4.
高级  张海江 《地球物理学报》2016,59(11):4310-4322
在利用不同的地球物理勘探方法对地下复杂介质成像时,因观测系统的非完备性及数据本身对某些岩石物性的不敏感性,单独成像的结果存在较大的不确定性和不一致性.对于地震体波走时成像与直流电阻率成像,均面临着成像阴影区问题.对于地震走时成像,地震射线对低速区域覆盖较差形成阴影区,造成低速区域分辨率降低.对于电阻率成像,电场线在高阻区域分布较少,造成高阻区域分辨率较低.为了提高地下介质成像的精度,Gallado和Meju(2003)提出了基于交叉梯度结构约束的联合地球物理成像方法.在要求不同的物性模型拟合各自对应的数据同时,模型之间的结构要求一致,即交叉梯度趋于零.为了更有效地实现基于交叉梯度的结构约束,我们提出了一种新的交替结构约束的联合反演流程,即交替反演不同的数据而且在反演一种数据时要求对应的模型与另一个模型结构一致.新的算法能够更容易地把单独的反演系统耦合在一起,而且也更容易建立结构约束和数据拟合之间的平衡.基于新的联合反演流程,我们测试了基于交叉梯度结构约束的二维跨孔地震走时和直流电阻率联合成像.合成数据测试表明,我们提出的交替结构约束流程能够很好地实现基于交叉梯度结构约束的联合成像.与单独成像结果相比,地震走时和全通道电阻率联合成像更可靠地确定了速度和电阻率异常.  相似文献   

5.
综合地球物理技术在采空区的探测中发挥了重要作用.目前通常采用单方法反演、仅对不同方法反演结果进行对比解释的综合勘探方式,单方法反演的多解性严重降低了其探测精度.如何提高采空区的探测精度,对采空区进行有效探测一直被认为是地球物理技术面临的首要难题.为了提高地震与电法技术的探测精度,基于交叉梯度联合反演理论,设计了地震初至折射走时数据和高密度电法数据的联合反演算法流程,对采空区理论模型和野外实际数据进行了联合反演处理.结果发现通过两者的联合反演,不仅可以提高采空区电阻率反演模型的成像效果,而且能够获得地震单方法反演难以成像的采空区低速异常体,从而提高了地震与电法技术对采空区的探测精度.表明地震与电法探测数据联合反演是一种提高采空区探测精度的有效方法.  相似文献   

6.
本文通过应用地震层析成像(cT)技术,对跨孔成像法采集得到的初至波走时,用基于最短路径法的弯曲射线追踪正演和基于LSQR算法的反演技术进行处理。与测井资料联合解释,得到井间波速分布图,对井控范围内的地层构造和地基注浆效果进行了研究,最终得到断裂构造带和人防空洞的分布。认为地震cT在进行城市环境地质调查与评价、浅层工程地质勘察时,能够解决地层岩性和构造的复杂性,对目标环境进行准确预测,在城市环境地质研究和基础设施建设中起重要作用,对促进城市地球物理勘察技术的发展有重要意义。  相似文献   

7.
8.
An integrated geophysical survey has been conducted at the Tarragona’s Cathedral (Catalonia, NE Spain) with the aim to confirm the potential occurrence of archaeological remains of the Roman Temple dedicated to the Emperor Augustus. Many hypotheses have been proposed about its possible location, the last ones regarding the inner part of the Cathedral, which is one of the most renowned temples of Spain (twelfth century) evolving from Romanesque to Gothic styles. A geophysical project including electrical resistivity tomography (ERT) and ground probing radar (GPR) was planned over 1 year considering the administrative and logistic difficulties of such a project inside a cathedral of religious veneration. Finally, both ERT and GPR have been conducted during a week of intensive overnight surveys that provided detailed information on subsurface existing structures. The ERT method has been applied using different techniques and arrays, ranging from standard Wenner–Schlumberger 2D sections to full 3D electrical imaging with the advanced Maximum Yield Grid array. Electrical resistivity data were recorded extensively, making available many thousands of apparent resistivity data to obtain a complete 3D image after a full inversion. In conclusion, some significant buried structures have been revealed providing conclusive information for archaeologists. GPR results provided additional information about shallowest structures. The geophysical results were clear enough to persuade religious authorities and archaeologists to conduct selected excavations in the most promising areas that confirmed the interpretation of geophysical data. In conclusion, the significant buried structures revealed by geophysical methods under the cathedral were confirmed by archaeological digging as the basement of the impressive Roman Temple that headed the Provincial Forum of Tarraco, seat of the Concilium of Hispania Citerior Province.  相似文献   

9.
A cross-hole Electrical Resistivity Tomography (ERT) study was undertaken near the center of Thessaloniki in order to detect the depth of the existing city walls in the planned route of the new city underground train. This cross-hole setup was used for a study of measurements with various electrode arrays in real urban field conditions to evaluate the resolution of the models which is produced by each array and the reliability of the models which is produced by the newly published “MOST” technique. The pole–tripole array (C2–C1P1P2) produces high resolution models, even when only borehole electrodes are used. The bipole–bipole C1C2–P1P2 array, when used for cross-hole measurements only, produces higher resolution models compared to the C1P1–C2P2 array, even with a lower signal-to-noise ratio, which can result in extremely high RMS error, when noise, systematic or not, must be faced. The models of both arrays are greatly improved by the use of surface electrodes. The pole–bipole array (C1–P1P2) is proved to be less accurate in imaging and quite unstable to the noisy urban environment and to systematic errors. Furthermore, the Model Stacking (MOST) interpretation technique leads to better results with models of greater resolution and fewer artifacts compared even with the combined data inversion. Finally, the ERT cross-hole analysis has been reliable in detecting the city walls.  相似文献   

10.
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.  相似文献   

11.
地球物理勘探方法在岩土工程的应用已有很长一段时间,但其成效与工程师的期待往往有不小的落差,以致于在一般的工程应用上仍不普遍.近年来浅地表地球物理技术有显着的进展,特别是在走时速度层析成像(Traveltime Tomography)、电阻率层析成像法(Electrical Resistivity Tomography)及多道瞬态面波法(Multichannel Analysis of Surface Wave).本文首先介绍这些方法在台湾岩土工程的应用,主要包括地层土壤液化潜能评估、坝体的安全检测、土壤与地下水污染调查及地基改良的质量管控等,应用案例以台湾常使用的地球物理勘探方法逐一介绍.虽然许多成功案例与新的应用方向对于浅地表地球物理技术在岩土工程应用的推广起了鼓舞作用,本文从工程师的角度提出地球物理勘探工程大量应用的挑战与瓶颈,包括如何提升探测数据的客观性、数据反演非唯一性问题、探测深度与分辨率的限制、实际条件违背反演基本假设的情况、以及地物性质与工程性质链接的不确定性问题,并进一步针对这些问题说明相关研究的进展与实务对策.希冀透过上述探讨,降低物探师与工程师认知上的差距,提升地球物理勘探在工程的应用的合理性与普及性.  相似文献   

12.
In order to perform resistivity imaging, seismic waveform tomography or sensitivity analysis of geophysical data, the Fréchet derivatives, and even the second derivatives of the data with respect to the model parameters, may be required. We develop a practical method to compute the relevant derivatives for 2.5D resistivity and 2.5D frequency-domain acoustic velocity inversion. Both geophysical inversions entail the solution of a 2.5D Helmholtz equation. First, using differential calculus and the Green's functions of the 2.5D Helmholtz equation, we strictly formulate the explicit expressions for the Fréchet and second derivatives, then apply the finite-element method to approximate the Green's functions of an arbitrary medium. Finally, we calculate the derivatives using the expressions and the numerical solutions of the Green's functions. Two model parametrization approaches, constant-point and constant-block, are suggested and the computational efficiencies are compared. Numerical examples of the derivatives for various electrode arrays in cross-hole resistivity imaging and for cross-hole seismic surveying are demonstrated. Two synthetic experiments of resistivity and acoustic velocity imaging are used to illustrate the method.  相似文献   

13.
A high resolution geophysical survey was carried out on the Pont De Coq, a medieval stone arch bridge located in Normandy (France) in 2011 and 2012. Two complementary methods are used: Electrical Resistivity Tomography (ERT) and Ground PenetratingRadar (GPR). They allow to evaluate the structural state of the bridge and to characterize the subsurface around and beneath the bridge. An excellent correlation is obtained between the geophysical methods and the geological data obtained around the bridge. In order to improve the restitution of the geophysical data, an advanced photogrammetric method is performed, providing a high resolution 3D Digital Terrain Model (DTM) of the Pont de Coq. The advanced photogrammetry enhances the presentation of the GPR and ERT data. This approach is an easy-to-use, rapid and cost-effective tool for stakeholders. Finally, it is a promising and original method for improved interpretations of future geophysical surveys.  相似文献   

14.
A geophysical study that involved different techniques was carried out with the aim to improve the knowledge of the archaeological site where the Basilica of Maxentius was founded and to discern individual covered structures (foundations).Vertical Electrical Sounding (VES), seismic refraction and Electrical Resistivity Tomography (ERT) studies were performed in the archaeological site. VES and seismic refraction allowed to characterise the main geological formations of the hill where the Basilica was built and to distinguish the concrete floor and backfilling. Electrical data were processed using different algorithms; their results were compared to appraise the inverted models' robustness.ERT inversion algorithms were used to delineate shape and size of a much more complex structure, that were originally expected from archaeological excavation plan. The results of the commercial program were used as a posteriori information to include them in the algorithm proposed by the authors; the sequential use of the programs defined a processing procedure.The integrated use of different geophysical techniques reduced a great deal the intrinsic ambiguities of each method. Direct explorations (boreholes and archaeological excavations) confirmed the geophysical results.  相似文献   

15.
剪切波速测试方法的现状分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目前测试场地土层剪切波速的方法有单孔法、跨孔法、瞬态面波法和稳态面波法,它们适用于各种工况。对各种波速测试方法进行了系统总结,指出其适用范围及优缺点。介绍了随钻地震这种新的原位测试方法,论述了该方法的应用前景。  相似文献   

16.
17.
Following a brief overview of the history and the development of the Surface Wave Method—with a focus on techniques for processing and inverting field data—a Simplified Inversion Method (SIM) is described, which constitutes an improvement of the Satoh et al. (1991) [1] method. The SIM is a direct inversion method of surface wave dispersion data, making use of a penetration depth coefficient, aR, whose value is a function of Poisson's ratio and the overall shape of the dispersion curve. In the present study the coefficient aR has been evaluated using data from (a) an extensive database compiled from the technical literature and containing results of inverted surface wave measurements and nearby cross-hole/down-hole measurements, (b) results of side by side surface wave and cross-hole measurements, performed at five sites in the course of this study, (c) finite element analyses simulating the performance of surface wave measurements and thus providing “virtual” data, and (d) applying a current advanced inversion code, available on the Web. Based on all the above data, optimum values of aR (and of the corresponding uncertainty of the derived Vso vs. depth profile) have been estimated. These values were found to be independent of depth from ground surface. The results of all analyses and comparisons indicate that for the majority of realistic soil profiles (including cases of normal and inverse dispersion conditions) the proposed SIM provides very reliable Vso vs. depth profiles when a value of aR=0.63–0.67 is used in the inversion process. It is concluded that the SIM can be used with confidence as a direct inversion method of surface wave dispersion data.  相似文献   

18.
Hidden mineshafts located in urban areas are a significant problem across much of the industrialized world. Electrical resistivity tomography (ERT) is a technique that can detect and characterize hidden mine entries by exploiting resistivity contrasts between the shaft and surrounding materials, resulting from either compositional or structural differences. A case study is presented in which both surface and crosshole 3D ERT surveys are used to image a hidden backfilled mineshaft at a built environment site, situated on Carboniferous Lower Coal Measures strata in the UK.Backfilled shafts generally present the greatest challenge for detection using geophysical methods, as contrasts between the fill and bedrock are typically low compared to air or water-filled conditions. Nevertheless, the shaft in this case was identified by both the surface and crosshole 3D surveys. The shaft appeared as a strongly resistive anomaly relative to background materials, which we interpreted as resulting from the disturbed fabric of the fill materials rather than any significant compositional differences. The study highlighted the respective strengths and weaknesses of the surface and crosshole ERT methodologies for this type of problem. The surface survey, which covered a non-rectangular area to accommodate irregular boundaries and other physical obstructions, provided a relatively rapid means of investigating the study site. However, this method had a limited depth of investigation and was constrained in its coverage by the locations of buildings. By contrast, the 3D crosshole method was able to image the shaft to the level of the deepest borehole electrodes. Although crosshole ERT is too expensive to be used for large-scale mineshaft surveys, this study clearly demonstrates its suitability for targeted investigations where surface methods cannot be deployed, such as scanning beneath surface structures or in situations where it is essential for resolution to be maintained with depth.  相似文献   

19.
The use of electrical resistivity tomography (ERT; non‐intrusive geophysical technique) was assessed to identify the hydrogeological conditions at a surface water/groundwater test site in the southern Black Forest, Germany. A total of 111 ERT transects were measured, which adopted electrode spacings from 0·5 to 5 m as well as using either Wenner or dipole‐dipole electrode arrays. The resulting two‐dimensional (2D) electrical resistivity distributions are related to the structure and water content of the subsurface. The images were interpreted with respect to previous classical hillslope hydrological investigations within the same research basin using both tracer methods and groundwater level observations. A raster‐grid survey provided a quasi 3D resistivity pattern of the floodplain. Strong structural heterogeneity of the subsurface could be demonstrated, and (non)connectivities between surface and subsurface bodies were mapped. Through the spatial identification of likely flow pathways and source areas of runoff, the deep groundwater within the steeper valley slope seems to be much more connected to runoff generation processes within the valley floodplain than commonly credited in such environmental circumstances. Further, there appears to be no direct link between subsurface water‐bodies adjacent to the stream channel. Deep groundwater sources are also able to contribute towards streamflow from exfiltration at the edge of the floodplain as well as through the saturated areas overlying the floodplain itself. Such exfiltrated water then moves towards the stream as channelized surface flow. These findings support previous tracer investigations which showed that groundwater largely dominates the storm hydrograph of the stream, but the source areas of this component were unclear without geophysical measurements. The work highlighted the importance of using information from previous, complementary hydrochemical and hydrometric research campaigns to better interpret the ERT measurements. On the other hand, the ERT can provide a better spatial understanding of existing hydrochemical and hydrometric data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Following a brief overview of the history and the development of the Surface Wave Method—with a focus on techniques for processing and inverting field data—a Simplified Inversion Method (SIM) is described, which constitutes an improvement of the Satoh et al. (1991) [1] method. The SIM is a direct inversion method of surface wave dispersion data, making use of a penetration depth coefficient, aR, whose value is a function of Poisson's ratio and the overall shape of the dispersion curve. In the present study the coefficient aR has been evaluated using data from (a) an extensive database compiled from the technical literature and containing results of inverted surface wave measurements and nearby cross-hole/down-hole measurements, (b) results of side by side surface wave and cross-hole measurements, performed at five sites in the course of this study, (c) finite element analyses simulating the performance of surface wave measurements and thus providing “virtual” data, and (d) applying a current advanced inversion code, available on the Web. Based on all the above data, optimum values of aR (and of the corresponding uncertainty of the derived Vso vs. depth profile) have been estimated. These values were found to be independent of depth from ground surface. The results of all analyses and comparisons indicate that for the majority of realistic soil profiles (including cases of normal and inverse dispersion conditions) the proposed SIM provides very reliable Vso vs. depth profiles when a value of aR=0.63–0.67 is used in the inversion process. It is concluded that the SIM can be used with confidence as a direct inversion method of surface wave dispersion data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号