首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 953 毫秒
1.
王涛  魏纲  徐日庆 《岩土力学》2006,27(Z1):483-486
隧道施工会引起周围土体移动,进而对邻近地下管线产生危害。采用Loganathan公式计算隧道开挖引起的管线平面处的土体竖向位移,对地下管线的受力模型进行简化,基于Winkler地基模型,推导出地下管线由于隧道开挖引起的弯矩和变形计算公式。通过相关算例的分析,与连续弹性解和Attwell解的计算结果进行了比较,研究结果表明,提出的方法可以很好地预估地下管线所受的弯矩。  相似文献   

2.
顶管施工对相邻平行地下管线位移影响因素分析   总被引:6,自引:2,他引:4  
余振翼  魏纲 《岩土力学》2004,25(3):441-445
顶管施工引起的管道周围土体移动会对相邻地下管线造成危害。采用三维有限元方法分析了顶管施工引起的相邻平行地下管线的位移,研究了注浆、纠偏、离顶管距离的远近、地下管线埋深、管线与土体弹性模量比及不同管材对地下管线位移的影响。计算结果表明,注浆与纠偏压力越大,地下管线的位移越大;地下管线距离顶管越远,引起的位移越小;地下管线弹性模量越小,产生的位移越大。  相似文献   

3.
地基土承受超载作用时就会产生沉降,在土体沉降作用下埋置于其中的管道,管壁就会产生变形甚至破裂。为分析地面超载对临近地下管线的影响,基于温克勒(Winkler)弹性地基短梁理论,应用Boussinesq解,考虑地面超载引起下卧层的沉降及地基土体的侧向移动对管道的影响,建立地面超载对埋地管道影响的分析计算模型,并采用有限差分法进行求解;通过算例分析了超载大小、位置,管道刚度、埋深、管径以及土体性质对埋地管道位移的影响;结果表明:超载大小、管道的刚度、埋深、管径对地下管道位移的影响较大,而当地基基床系数和超载离管道的距离增大到一定值时,地面超载对其影响将减弱。因此,需要考虑邻近超载对管道的影响,合理制定埋地管道的保护措施。  相似文献   

4.
王正兴  缪林昌  王冉冉  潘浩 《岩土力学》2013,34(Z2):143-149
隧道施工会对邻近管线造成危害,但目前对土体位移与管线位移两者之间的关系还没有清晰的认识。针对这一问题,设计砂土中考虑不同管线管径、埋深及抗弯刚度的3组隧道施工模型试验,分析垂直下穿隧道施工过程中砂土和管线位移规律。研究结果表明,Vorster修正高斯公式能较好地拟合砂土沉降分布,其控制参数?值在0.2~1.0之间变化,且与地层埋深成正比;土体沉降槽宽度系数i对管线变形有较大影响,埋深相同的条件下管线抗弯刚度与沉降值成反比;深埋管线的变形主要受上拱效应支配,且管径越大上拱效应越明显,而下拉效应主要支配着浅埋管线的位移;Smax /i为影响管土相对位移一个关键参数,在此基础上提出了修正的管土相对刚度计算公式。  相似文献   

5.
上海市城市道路发生的地面塌陷主要原因为浅部砂层分布区域地下排水管线渗漏引发流砂,导致地下土体流失,地表硬壳层承载力下降。将有限元和离散元二者进行耦合,从管线渗漏位置和对邻近管线影响两个方面诱发地下空洞机理进行数值模拟研究。研究结果表明,管道表面顶部局部渗漏引起地表以下土体流失量最大,底部渗漏造成的影响范围较小;管道断裂渗漏引起的地面塌陷范围比管道局部渗漏大得多,但深度较管道顶部局部渗漏引起的塌陷深度小;邻近管道埋深越大,地表以下土体流失量越大,引起塌陷影响区域范围越大,而埋深较浅时,其所受邻近渗漏管道的影响较大;在对地面塌陷进行监测与预防时,不应仅关注地表沉降变形,关注管道周边的土体变形是一种更加及时有效的方法。  相似文献   

6.
上海市城市道路发生的地面塌陷主要原因为浅部砂层分布区域地下排水管线渗漏引发流砂,导致地下土体流失,地表硬壳层承载力下降。将有限元和离散元二者进行耦合,从管线渗漏位置和对邻近管线影响两个方面诱发地下空洞机理进行数值模拟研究。研究结果表明,管道表面顶部局部渗漏引起地表以下土体流失量最大,底部渗漏造成的影响范围较小;管道断裂渗漏引起的地面塌陷范围比管道局部渗漏大得多,但深度较管道顶部局部渗漏引起的塌陷深度小;邻近管道埋深越大,地表以下土体流失量越大,引起塌陷影响区域范围越大,而埋深较浅时,其所受邻近渗漏管道的影响较大;在对地面塌陷进行监测与预防时,不应仅关注地表沉降变形,关注管道周边的土体变形是一种更加及时有效的方法。  相似文献   

7.
隧道开挖对地下管线的影响分析   总被引:16,自引:0,他引:16  
毕继红  刘伟  江志峰 《岩土力学》2006,27(8):1317-1321
采用Abaqus有限元分析软件,建立三维模型,模拟隧道开挖对地下管线的影响,充分考虑了不同的埋深、材质、下卧层刚度等条件。结果表明,管线周围土的性状,与双线隧道的相对位置以及管线自身刚度、管径等不同,将对其变形和内力产生较大影响,从而得出一些规律,为今后类似工程施工提供依据。  相似文献   

8.
《岩土力学》2015,(9):2433-2441
高温、高压作用下不埋或浅埋的海底管线较易发生水平向整体屈曲,土体对管线的阻力决定了管线的变形形态及变形后的应力状态,因此,确定管线受到的土体阻力对准确地分析管线的整体屈曲有重要意义。开展了基于渤海砂性土体的系列室内模型试验,测定了不同埋深条件下管线受到的土体阻力,建立了随埋深条件而变化的土体动态阻力模型,揭示了埋深对土体阻力峰值和最终稳定值的影响。由于ABAQUS内置的罚函数接触模型无法实现管-土界面的动态摩擦特性,开发了子程序VFRIC,在管线温-压联合作用下的整体屈曲分析中成功引入了建立的土体动态阻力模型,实现了土体阻力大小与管线位移相关的动态接触特性模拟,从而较为真实地反映了管线整体屈曲过程中受到的土体阻力变化过程。研究表明,不同土体阻力模型对管线整体屈曲分析结果影响显著,在动态阻力模型中由于土体阻力存在峰值和衰减过程,因此计算得到的管线整体屈曲临界轴力明显提高,管线屈曲变形更为集中,最大弯矩和应变也相应增大。  相似文献   

9.
李海丽  张陈蓉  卢恺 《岩土力学》2018,39(Z1):289-296
隧道开挖引起的地层不均匀沉降造成附近的地埋管线产生额外的变形,甚至破坏。被动管线与土体的相互作用的研究表明,不考虑土体的刚度衰减,较大的土体弹性模量使得管线的最大弯矩计算结果过大,偏于保守,造成不必要的浪费。在被动管线Winkler地基模型分析基础上,引入土体刚度衰减模型考虑土体非线性特性,提出了隧道开挖作用下管线响应的等效线性分析方法。基于自由土体位移场计算管周土体由于隧道开挖引起的附加应变,基于水平受荷桩的环状弹性介质模型考虑由于管土相互作用引起的管周土体应变,从而对被动Winkler地基模型的土体弹性参数进行修正,计算得到管线的最大弯矩。通过与现有的弹性理论方法、离心模型试验结果的对比,验证了针对隧道开挖引起的被动管土相互作用问题,该方法考虑土体非线性特性的合理性。  相似文献   

10.
陈卓 《岩土工程技术》2013,(5):234-237,258
城市地下空间规划中,地下管线的新建和维护是很重要的环节,这都需要知道地下管线的准确位置,因此管线探测必不可少。在管线探测中,非金属管线的探测是比较困难的。论述了使用钎探法探测硬质大管径非金属管线,快速准确确定管线中心位置及中心顶部埋深的方法,推导出计算公式并编写了相应的软件,在实际工程中取得应用,快速而有效地解决了硬质大管径非金属管线探测的问题。  相似文献   

11.
Cross-sectional ovalization of buried steel pipes subjected to bending moment induced by end displacements is discussed. A three dimensional finite element analysis was conducted employing Abaqus/CAE. The pipe was simulated using 3D shell elements while the saturated sand soil medium was simulated by employing discrete nonlinear springs along the pipeline. The effects of normalized burial depth (H/D), diameter to wall thickness ratio (D/t), sand density and level of the internal pressure on the ovalization are investigated, and resulting ovalization distribution with respect to bending moment at critical sections is presented. The results of this study enable simple one dimensional finite element models to consider geometrical cross-sectional nonlinearities in the analysis of buried pipelines.  相似文献   

12.
深埋顶管顶力理论计算与实测分析   总被引:1,自引:0,他引:1  
针对管幕预筑法中深埋顶管顶力进行理论和实测分析。顶管顶力与垂直土压力密切相关。参照隧道开挖中垂直土压力的计算方法,常用的垂直土压力计算理论有:普氏理论和太沙基理论。在详细分析了这两种垂直土压力计算理论的适用性和缺陷之后,结合普氏理论和太沙基理论,提出了改进的垂直土压力计算理论公式,并编写MATLAB程序计算改进理论公式的数值解。改进理论既考虑了土拱效应,又考虑了拱下土体的挟持力,更符合实际土体变形情况。将普氏理论、太沙基理论和改进的理论应用于沈阳地铁新乐遗址站管幕预筑法顶管工程中,计算不同深度的两根大埋深管道顶力,并把计算与实测结果进行比较,发现普氏理论和太沙基理论计算结果都远大于实测值,改进理论计算结果稍大于实测值,更适合于深埋顶管顶力估算。  相似文献   

13.
张治国  张孟喜  王卫东 《岩土力学》2014,35(Z2):121-128
基于层状体系解析刚度矩阵理论解,结合5节点Gauss-Legendre求积公式,提出了层状地基中顶管施工正面附加推力、掘进机与土体之间摩擦力以及共同作用力引起的附加荷载计算方法,分析了顶管推进引起的土体竖向附加荷载分布规律,也研究了地基等效均质性、土层力学参数、计算点间距以及顶管埋深等因素对顶管施工诱发附加荷载的影响效应。研究结果表明,掘进摩擦力引起的附加荷载在掘进面前方迅速达到压应力峰值,其量值大小和影响范围均要大于正面附加推力,是顶管施工引起临近地层附加荷载的主要影响因素。此外,层状地基土体参数的改变会对顶管施工扰动地层的附加荷载产生一定影响,地基等效均质性、计算点间距以及顶管埋深等因素对附加荷载大小及分布均存在显著影响。成果可为合理制定顶管开挖对周围土工环境的保护措施提供一定理论依据,也可为其他盾构隧道工程提供一定的理论参考。  相似文献   

14.
基于弹性地基梁理论的冻胀作用下管道应力分析   总被引:3,自引:1,他引:2  
穿越冻土区的埋地管线在遭遇冻土差异性冻胀时,管道会发生翘曲变形,管线将面临很大的安全隐患。为此,基于弹性地基梁理论建立冻胀条件下的管-土相互作用模型,分析了管道在冻胀及其影响因素作用下的应力分布规律,探讨了冻土地基特性(弹性模量、泊松比及地基系数)与温度的关系,对比了不同地基系数、冻胀量、管径、壁厚、温差以及上覆土厚度等特定条件下的管道应力峰值状况。计算结果表明:管道在过渡段与冻胀段及非冻胀段交界处有最大应力值,各类影响因素对管道交界处的应力影响最显著;地基系数的值越大,差异性冻胀量越大,管径越大,温差越大,管道交界处应力峰值也越大;管壁越厚,在管道交界处的应力峰值越小;管道上覆土层越厚,管道受冻胀作用弯曲应力越小,即加深上覆土层可降低管道由于冻胀抬升所产生的应力,可减缓管道变形。  相似文献   

15.
考虑挤压式顶管施工时,不可避免会对周围的环境造成影响。根据土塑性力学的基本原理,考虑土体具有不同于其他材料的剪胀特性和塑性变形,按不相适应的塑性流动法则计算无限体内柱形孔穴扩张在周围土体内产生应力场和位移场。借助源一汇影像手段和Cemiti解进行剪应力修正,推得在顶管挤入过程中周围土体内的位移场和应力场表达式.基于此,研究了土层数、管径、埋深等各参数对竖向位移的影响的敏感性。最终得出顶管中心埋深h、顶管外半径Ru是影响竖向位移的最关键因素的结论。  相似文献   

16.
场地和断层对埋地管道破坏的影响分析   总被引:7,自引:3,他引:4  
朱庆杰  陈艳华  蒋录珍 《岩土力学》2008,29(9):2392-2396
场地条件和断层活动是埋地管道破坏的主要原因,避免因为场地岩土和断层的影响而造成管道破坏,是城市地下生命线工程建设中急需解决的问题。采用ADINA软件的Parasolid建模方式,通过定义合适的体类型和布尔操作,建立了埋地管道破坏分析的几何模型,实现了土体-断层-管道破坏有限元建模。借助模型参数选择,确定了基岩与岩土性质、管道特性等模型参数;定义了管-土摩擦和约束条件、地震波和断层位移荷载等。依据计算结果,分析了场地条件和断层参数对地下管道地震破坏的影响;结果表明:管道埋藏越深,断层断距越大,管道的变形越大,破坏越严重。给出了管-土摩擦系数和断层与管道交角的最优值,并给出了几点工程建议。  相似文献   

17.
任建亭  侯庆志 《岩土力学》2008,29(3):645-650
考虑土体-结构-流体耦合作用,研究流体脉动对浅埋输液管道轴向应力的影响.基于流固耦合、管-土耦合理论,建立了浅埋管道动力学分析模型,应用力平衡条件,推导了浅埋管道的静力及动力方程,并利用行波方法求取了动力方程的解析解.在此基础上,研究了管道应力特性.结果表明:流固耦合对浅埋管道应力有较大影响,较小幅值的压力脉动可使管道应力大幅增加.同时,讨论了管道埋深、土质条件及管道半径对管道应力的影响.在相同流体脉动激励下,管道应力随覆盖层厚度、土体刚度、管道半径增加而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号