首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
根据高分辨率重、磁测网数据的分析,结合多波束海底地貌的构造解释,南海海盆新生代经历了两期不同动力特征的海底扩张,25 Ma的沉积-构造事件是其重要分界.早期扩张从约33.5 Ma开始至25 Ma停止,在东部海盆南、北两侧和西北海盆形成了具有近E-W向或NEE向磁条带的老洋壳,是近NNW-SSE向扩张的产物;晚期扩张从2...  相似文献   

2.
本文总结了渐进式扩张洋中脊和渐进式演化海盆的全球空间分布,并将西南次海盆与典型渐进式演化的亚丁湾加以比对,通过对海盆扩张中心的起源、扩张中心分段特征、火山活动、磁异常特征等的比较,为西南次海盆的演化提供新观点,为南海的演化观点寻找新证据.西南次海盆为渐进式扩张的海盆,与东部次海盆属于同一期扩张形成,海盆的渐进式扩张与渐进式扩张的方向很有可能受到地幔热柱(印支地幔柱、南海中部低速柱或海南地幔柱)的控制.南海的扩张演化模式并不是单一的,而是多种模式的综合,在考虑海底演化模式时应该同时考虑地幔柱的影响.  相似文献   

3.
南海东部海盆晚期扩张的构造地貌研究   总被引:14,自引:0,他引:14  
东部海盆存在三组走向不同的北东向线性构造带, 它们分布于黄岩海山链南、北两侧约350 km宽的中央区内, 是张性基底断裂在海底的反映. 这三组构造带分别对应海盆三个扩张期: 磁条带异常6c~6a(24~21 Ma), 6a~5e(21~19 Ma)和 5e~5d(5c) (19~16 Ma). 东部海盆扩张方式具有不稳定性、分段性及不对称性的特点. 各扩张期内, 线性构造走向呈连续变化, 而各扩张期之间线性构造走向则均有3° ~5°跃变, 反映扩张方向存在渐变和突变的演化特点; 与扩张同期的北西向转换断层, 空间分布上呈由东向西逐步加密的特征, 各段间北东向线性构造走向变化较大, 反映扩张轴纵向延伸的分段性; 在21 Ma(磁异常6a)前后, 存在一次重要的海底扩张增速事件, 从早期的30.54 km/Ma增加到晚期的42.88 km/Ma, 对应基底断裂、沉积作用和火山活动等扩张特征的跃变; 扩张不对称率普遍东部大于西部, 扩张速率南侧明显大于北侧, 导致海盆扩张具有东宽西窄的特点及较强的不对称性.  相似文献   

4.
由于缺少有效钻孔资料,对于南海扩张的时间一直存在较大的疑问.在南海三大海盆中,西北次海盆面积最小、磁条带特征不明显,因此对其扩张年代的争议最大.最新采集的高密度(小于10 km测线间距)船测地磁资料清晰地显示了西北次海盆磁条带的存在.在OBS和多道地震资料的约束下,利用船测地磁资料,本文对西北次海盆的地壳年龄进行了重追踪.根据定量的比较,西北次海盆的主体扩张始于35.8 Ma(C16n,2n),在34.7 Ma(C15)时其西南部开始扩张,扩张最终同时终止于33.2 Ma(C13n),整体的全扩张速率在40~50 mm/a之间.这表明南海的扩张可能首先起源于西北次海盆,在其结束扩张后,东部次海盆才开始打开(约30 Ma).得益于数据精度和密度的提高,利用化极后的磁力异常以及反演的磁化强度可以对西北次海盆进行二级中脊段的划分.我们共划分出六个中脊段和一个明确的转换断层.中脊的分段性与OBS反演的地壳厚度的变化相一致.转换断层东侧,中脊主体分为四个中脊段,每个中脊段长度均在30 km左右.转换断层西侧,存在一个长约50 km的中脊段和一个不确切的中脊段.中脊段上磁化强度的变化幅值和中脊段长度在整体上成正比.每个中脊段中央的磁化强度弱于中脊段两端的磁化强度,这与扩张速率相近的大西洋中脊的磁化强度特征一致.  相似文献   

5.
南海西北次海盆地壳结构:海底广角地震实验结果   总被引:3,自引:0,他引:3  
利用完整穿越南海西北次海盆及其两侧大陆边缘的海底广角反射/折射地震测线,反演了该地区的地壳结构.该测线总长484km,共投放海底地震仪(OBS)14台,台站间距30km,组合枪阵激发总容量5160in3(1in3=16.3871cm3).结合同测线多道地震资料,通过OBS数据的精细处理和初始建模,利用射线追踪正反演技术,获得了西北次海盆地壳速度结构模型.结果表明,地壳厚度从上陆坡的21km减薄至下陆坡的14km,在西北次海盆为7.7km;莫霍面埋深从上陆坡的21km上升到海盆中央的11km.西北次海盆和东部次海盆的地壳速度结构相似,都为大洋地壳,但不同的是层1(沉积层)增厚,层2减薄,该特点在东部次海盆尤其明显.西北次海盆及其两侧边缘构造形态和速度结构对称分布,存在共轭关系,其陆缘张裂机制属纯剪切模式.模型中的西北次海盆北侧陆缘下地壳没有发现高速层,这为南海北部陆缘西部非火山型地壳性质提供了新的证据.西北次海盆海底扩张规模小、时间短,且层2可能经历了玄武岩岩浆的不对称溢流,这可能导致西北次海盆磁条带异常的模糊化.  相似文献   

6.
南海西南次海盆与南沙地块的OBS探测和地壳结构   总被引:18,自引:9,他引:9       下载免费PDF全文
跨越南海西南次海盆南部陆缘和南沙地块中部的OBS973-1测线是南海南部首次采集的海底地震仪(OBS)广角反射与折射深地震测线,本文通过震相分析和走时正演拟合,获得了沿测线的二维纵波速度结构模型.模拟结果显示表层沉积物速度2.5~4.5 km/s,厚度1000~3000m,局部基底面起伏较大.结晶基底的速度从顶部的4....  相似文献   

7.
南海大陆边缘动力学:科学实验与研究进展   总被引:13,自引:4,他引:9       下载免费PDF全文
李家彪 《地球物理学报》2011,54(12):2993-3003
国家重点基础研究发展计划(973)项目(2007CB411700)首次在南海南部大陆边缘及西南次海盆开展长排列大震源多道地震、海底地震仪(OBS)折射/反射地震等的综合地球物理探测,结合地质构造、地球化学、动力模拟等的综合研究,形成如下重要认识:南海海盆新生代发生了早、晚两期海底扩张.早期扩张发生于33.5~25 Ma...  相似文献   

8.
南海中央次海盆残余扩张脊的深部地震探测对于研究南海的形成演化和动力学机制至关重要.本文借助拉布拉多海残余扩张脊内部结构的研究,获得了扩张脊在扩张期和扩张后形成过程的认识.并从多个方面将拉布拉多海与南海进行对比分析,对残余扩张脊的形成环境和形成机制等得到了一些初步认识:两者同属于慢速扩张,扩张过程中,构造作用占主导地位,岩浆作用次之,扩张脊内部结构具有相似性;海盆扩张时期,两者都发生了洋脊跃迁,指示了重要了构造事件;两者的大陆边缘同属于非火山型不对称被动大陆边缘,海盆扩张初期岩石圈以拉张为主,岩浆活动较弱等.这些认识必将为南海中央次海盆残余扩张脊的内部结构研究以及后期的地质解释提供思路和依据.  相似文献   

9.
南海地区岩石圈资料稀少,阻碍了其形成演化过程的研究.为此,本次研究结合大地热流、空间重力异常、高程、大地水准面和地震数据,在南海西南次海盆反演了两条2.5维岩石圈剖面.本次计算基于三种假设:岩石圈地幔的密度取决于岩石温度;研究区岩石圈处于热稳定状态;研究区处于重力均衡状态.在剖面A-E中,岩石圈底界面从珠江口盆地的105 km迅速抬升到西沙海槽处的50 km,在西沙海槽、西沙-中沙群岛和西南次海盆变化不大,为50~60 km.在剖面F-I中,岩石圈底界面从西沙群岛-中建地块处的88 km向海盆逐渐抬升,在西南次海盆处为46~50 km,到郑和隆起再逐渐变深至64 km.我们比较了西南次海盆岩石圈的冷却模型和热稳定模型,根据冷却模型由水深和热流数据所推断的西南次海盆年龄比实际年龄差很多,说明冷却模型不适用于西南次海盆.通过对比剖面A-E和剖面F-I,说明了剖面A-E经历了更长时间的拉伸,证明南海西南次海盆在形成演化过程中是从北东向南西逐步打开的渐进式扩张.最后,我们综合分析西南次海盆及其大陆边缘的岩石圈结构、减薄陆壳区范围、碳酸盐台地的分布、下地壳韧性流动、流变结构和沉积层特征等多方面资料,认为西南次海盆在形成演化过程中岩石圈地幔首先破裂而地壳后破裂,属于type Ⅱ型非火山型大陆边缘.  相似文献   

10.
丁巍伟  李家彪 《地球物理学报》2011,54(12):3038-3056
973项目“南海大陆边缘动力学与油气资源潜力”在南海南部陆缘采集了两条多道地震剖面,其中NH973-1测线始于南海西南次海盆,横跨了整个南沙地区,至于婆罗洲西北侧,NH973-2测线位于礼乐滩东侧.对地震剖面的解释共划分出7个层序界面,地层可以划分为5个构造沉积单元.根据地震解释对不同时期断层的水平断距进行了测量及分析...  相似文献   

11.
南海西南海盆壳幔结构重力反演与热模拟分析   总被引:4,自引:3,他引:1       下载免费PDF全文
张健  李家彪 《地球物理学报》2011,54(12):3026-3037
壳幔结构及扩张期后的岩浆活动是研究南海西南海盆形成演化的关键.本文针对NH973-1剖面开展壳幔密度结构重力反演,并依据重力反演的壳幔模型,定量模拟海底扩张期后的壳幔热结构与热演化过程.重力反演表明:西南海盆中央残余扩张脊之下存在一个较深的凹陷带,其下Moho面比两侧略深,呈现扩张期后的热沉降特点.热模拟发现:海盆扩张...  相似文献   

12.
Three NE-trending linear structural zones with different strikes are present in the Eastern Subbasin of the South China Sea. They are distributed in the 350-km-wide central region of both sides of the Scarborough seamount chain, representing a morphological indication of the basement faulting. These three zones correspond respectively to three spreading episodes: the magnetic anomalies 6c -6a (24-21 Ma), 6a - 5e (21 - 19 Ma) and 5e - 5d (5c) (19 - 16 Ma). Instability, subsection and asymmetry characterize the seafloor spreading of the subbasin. The spreading directions change in a continuous way in each of the zones, but abrupt changes by 3°-5° occur when crossing the boundary between the zones, reflecting that the spreading direction has evolutionary characteristics of both gradual and sudden changes. NW-trending transform faults of the spreading become progressively densely distributed from the east to the west, cutting the NE-trending zones into several segments, between which the strikes of the NE-trending zones have marked changes. Such features indicate that the spreading axis is associated with subsection along the strike. Around 21 Ma (magnetic anomaly 6a), there was an important event of spreading acceleration, with the full rate rapidly increasing from 30.54 km/Ma to 42.88 km/Ma. This rate increment event corresponds to the sudden changes in the spreading characteristics of basement faulting, sedimentation, volcano activities, etc. The asymmetry of spreading over the eastern part of the Eastern Subbasin is generally larger than that over the western part, and the spreading rate is markedly larger on the southern side than on the northern side. As a result, the oceanic basin is wide in the east and narrow in the west, forming a significantly asymmetric pattern.  相似文献   

13.
The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7–2.7 Ma that are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30–50 km). It comprises NW–SE trending subparallel deeps, 3–16 km wide, that can be traced ≥ ∼30 km from the trench almost to the backarc spreading center, the Malaguana‐Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low‐K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ∼23 ± 6.6 km depth and 1239 ± 40°C, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab‐derived fluids. Stretching of pre‐existing forearc lithosphere allowed BAB‐like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts interacted with pre‐existing forearc lithosphere during ascent. The SEMFR is no longer magmatically active and post‐magmatic tectonic activity dominates the rift.  相似文献   

14.
TAN Hao-yuan  WANG Zhi 《地震地质》2019,41(6):1366-1379
3-D VP and VS images of southern Philippines at the 0~100km depths are generated by inverting a large number of travel-time data from the International Seismological Centre(1960-2017)through seismic tomography method. The results show lateral variation exists in the crust and upper mantle:High VP and VS anomalies emerge in mid-west Mindanao and Bohol Island, which might be caused by the combined action of huge magmatism and ophiolite accretion in the lower crust; low velocity anomalies of the upper mantle in the west of Mindanao are consistent with locations of volcanoes on the surface. It, thus, could be inferred that the low velocity anomaly is closely related to magmatic activity. The dense earthquake distribution along plate margin extending to 100km coincides with the strong activity of the Philippine Sea Plate which is located in the northeast and southeast of Mindanao. Relative weak activity of Sulawesi Sea Basin is presented simultaneously. The subduction of the Philippine Sea Plate is mostly concentrated in the crust and the top of the uppermost mantle. Our tomographic images show that lateral heterogeneities exist in the crust and uppermost mantle of the southern Philippines. Low VP and VS anomalies emerge in Philippine Trench and Cotabato Trench, in contrast, high VP and VS anomalies appear in shallow crust of land area where a large number of earthquakes and magmatic activities develop. This may reflect strong tectonic processes between the Philippine Sea Plate and Philippine Mobile Belt. Low VP and VS anomalies in the crust of eastern Mindanao coinciding with the location of volcanoes on the surface may show partial melting of crust material caused by dehydration of the subducting Philippine Sea Plate. Such a similar phenomenon can be also seen in the south of Negros Island and Cotabato Trench. Thus we infer that active tectonic behaviors are constrained within the crust of the Philippine Sea Plate, Sulu Sea Basin and Sulawesi Basin.Low VP and VS anomalies of the mantle in the mid-west of Mindanao island are associated with magmatic activity which may be caused by a collision between the east and west part of Mindanao at 5Ma. The fracture system in the west of Mindanao provides the possible passage ways of mantle hot material upwelling, coinciding with the model of geothermal distribution in this area. According to the geochemical analysis, ophiolite observed in Sanbaoyan and the western part of Mindanao could indicate material composition from crust to upper mantle on Eurasian continental margin which may show the evidence of rapid expansion environment of mid-ocean ridge. High VP and VS anomalies in the mantle of northeast and southeast of Mindanao coinciding with the distribution of massive earthquake along boundaries show a well agreement with the shape of the Philippine Sea Plate. Dense earthquake distribution in south Mindanao at 100km shows the Philippine Sea Plate has strong activity and stress accumulation in the upper mantle. On the contrary, the seismicity in southwest Mindanao and Cotabato Trench reduces rapidly at the depth from 50km to 100km, revealing weak subduciton and stress release of Sulawesi Basin in the mantle.  相似文献   

15.
Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge. These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off-axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.  相似文献   

16.
Ascertaining the emplacement mechanism of oceanic basaltic lavas is important in understanding how ocean floor topography is produced and oceanic plates evolve, particularly during the early stages of crustal development of a supra-subduction zone. A detailed study of the volcanic stratigraphy at International Ocean Discovery Program (IODP) Site U1438 in the Amami Sankaku Basin, west of the Kyushu–Palau Ridge, has revealed the development of lava accretion and ridge topography on the Philippine Sea plate at about 49 Ma. Igneous basement rocks penetrated at Site U1438 are the uppermost 150 m of ~6 km-thick oceanic crust, and comprise, in a downhole direction, sheet flows (12.6 m), lobate sheet flows (61.3 m), pillow lavas (50.7 m), and thin sheet flows (25.3 m). The lowermost sheet flows are intercalated with layers of limestone and epiclastic tuff. Lithofacies analysis reveals that the lowermost sheet flows, limestone, and tuff formed on an axial rise, the pillow lavas were emplaced on a ridge slope, and the lobate sheet flows formed off ridge on an abyssal plain. The lithofacies of the basement basalt corresponds to the upper portions of fast-spreading oceanic crust, suggesting that subduction initiation was associated with intermediate to fast rates of seafloor spreading. The surface sheet flows are olivine–clinopyroxene-phyric basalt and differ from the lower basalt flows that contain phenocrysts of olivine and plagioclase, with or without clinopyroxene. The depleted chrome-spinel composition and olivine–clinopyroxene phenocryst assemblage in the surface sheet flows suggests a slight contribution of water for magma generation not present for the lower basalt flows. Considering the lithological difference between the backarc and forearc oceanic crust in the Izu–Bonin–Mariana arc, with sheet flow dominant in the former, seafloor spreading occurred faster in the later stage of subduction initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号