首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究地震之前的异常现象,在实验室内对岩石标本和人造样品加压时观测氡和钍射气量、水电导率以及氢气的变化。实验结果表明,样品破裂之前这些参数发生明显变化。这些变化与地震前的某些水化学异常现象是近似的。显然,还有许多因素可引起地下水中化学成分、含量的变化,为研究其变化机理问题,需要进一步的实验及现场观测。  相似文献   

2.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

3.
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process.  相似文献   

4.
Reventador Volcano entered an eruptive phase in 2005 which included a wide variety of seismic and infrasonic activity. These are described and illustrated: volcano-tectonic, harmonic tremor, drumbeats, chugging and spasmodic tremor, long period and very long period events. The recording of this simultaneous activity on an array of three broadband, seismo-acoustic instruments provides detailed information of the state of the conduit and vent during this phase of volcanic eruption. Quasi-periodic tremor at Reventador is similar to that observed at other volcanoes and may be used as an indicator of vent aperture. Variations in the vibration modes of the volcano, frequency fluctuations and rapid temporal fluctuations suggest the influx of new material, choking of the vent and possible modification of the conduit geometry during explosions and effusion over a period of six weeks.  相似文献   

5.
We develop an automatic system for the sampling of ash fall particles, to be used for continuous monitoring of magma ascent and eruptive dynamics at active volcanoes. The system consists of a sampling apparatus and cameras to monitor surface phenomena during eruptions. The Sampling Apparatus for Time Series Unmanned Monitoring of Ash (SATSUMA-I and SATSUMA-II) is less than 10 kg in weight and works automatically for more than a month with a 10-kg lead battery to obtain a total of 30 to 36 samples in one cycle of operation. The time range covered in one cycle varies from less than an hour to several months, depending on the aims of observation, allowing researchers to target minute-scale fluctuations in a single eruptive event, as well as daily to weekly trends in persistent volcanic activity. The latest version, SATSUMA-II, also enables control of sampling parameters remotely by e-mail commands. Durability of the apparatus is high: our prototypes worked for several months, in rainy and typhoon seasons, at windy and humid locations, and under strong sunlight. We have been successful in collecting ash samples emitted from Showa crater almost everyday for more than 4 years (2008–2012) at Sakurajima volcano in southwest Japan.  相似文献   

6.
Spectral analyses of volcanic tremor at Etna during January 1984–March 1985, have been performed and the relationship between tremor energy and observed volcanic phenomena have been examined. The highest energy levels have been observed during the paroxysmal phases of eruptions, whereas a gradual decrease was linked to the lowering of eruptive activity. Amplitude variations with time of some spectral frequency peaks (0.95, 1.20, 1.45, 1.65, 1.80 and 2.40 Hz) have been compared with volcanic activity at the summit craters, and on the basis of these results a new schematic diagram for the feeding system of the summit vents is proposed.  相似文献   

7.
8.
Besides their common use in atmospheric studies, Doppler radars are promising tools for the active remote sensing of volcanic eruptions but were little applied to this field. We present the observations made with a mid-power UHF Doppler radar (Voldorad) during a 7-h Strombolian eruption at the SE crater of Mount Etna on 11–12 October 1998. Main characteristics of radar echoes are retrieved from analysis of Doppler spectra recorded in the two range gates on either side of the jet axis. From the geometry of the sounding, the contribution of uprising and falling ejecta to each Doppler spectrum can be discriminated. The temporal evolution of total power backscattered by uprising targets is quite similar to the temporal evolution of the volcanic tremor and closely reproduces the overall evolution of the eruption before, during and after its paroxysm. Moreover, during the sharp decrease of eruptive activity following the paroxysm, detailed analysis of video (from camera recording), radar and seismic measurements reveals that radar and video signals start to decrease simultaneously, approximately 2.5 min after the tremor decline. This delay is interpreted as the ascent time through a magma conduit of large gas slugs from a shallow source roughly estimated at about 500 m beneath the SE crater. Detailed analysis of eruptive processes has been also made with Voldorad operating in a high sampling rate mode. Signature of individual outburst is clearly identified on the half part of Doppler spectra corresponding to rising ejecta: temporal variations of the backscattered power exhibit quasi periodic undulations, whereas the maximum velocity measured on each spectrum displays a sharp peak at the onset of each outburst followed by a slow decay with time. Periodicity of power variations (between 3.8 and 5.5 s) is in agreement with the occurrence of explosions visually observed at the SE vent. Maximum vertical velocities of over 160 m s–1 were measured during the paraoxysmal stage and the renewed activity. Finally, by using a simplified model simulating the radar echoes characteristics, we show that when Voldorad is operating in high sampling rate mode, the power and maximum velocity variations are directly related to the difference in size and velocity of particles crossing the antenna beam.Editorial responsibility: A. Woods  相似文献   

9.
Eruptive gases, as sampled at temperatures ca. 1000°C, show strong and swift variations, both in space and time. High gradients and short periods characterize their chemical and physical parameters. On the other hand when collected in conditions preventing strong groundwater or air contamination, water is usually less abundant than carbon dioxide, and several times even absent. Carbon dioxide appears as the major component of the eruptive gas phase during high velocity high pressure (explosive) release phenomena. This tentatively suggests that this prevalence of the dense CO2 (1.5 heavier than air, 3 times heavier than steam) would account for the somewhat puzzling characteristics of nuées ardents and ignimbritic ash-flows, viz., their strong horizontal propagation component and their long heat-content preservation, that allow welding of pyroclasts at scores of kilometers from their emission vent.  相似文献   

10.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   

11.
The pyroclastic deposits of many basaltic volcanic centres show abrupt transitions between contrasting eruptive styles, e.g., Hawaiian versus Strombolian, or `dry' magmatic versus `wet' phreatomagmatic. These transitions are controlled dominantly by variations in degassing patterns, magma ascent rates and degrees of interaction with external water. We use Crater Hill, a 29 ka explosive/effusive monogenetic centre in the Auckland volcanic field, New Zealand, as a case study of the transitions between these end-member eruptive styles. The Crater Hill eruption took place from at least 4 vents spaced along a NNE-trending, 600-m-long fissure that is contained entirely within a tuff ring generated during the earliest eruption phases. Early explosive phases at Crater Hill were characterised by eruption from multiple unstable and short-lived vents; later, dominantly extrusive, volcanism took place from a more stable point source. Most of the Crater Hill pyroclastic deposits were formed in 3 phreatomagmatic (P) and 4 `dry' magmatic (M) episodes, forming in turn the outer tuff ring and maar crater (P1, M1, P2) and scoria cone 1 (M2–M4). This activity was followed by formation of a lava shield and scoria cone 2. Purely `wet' activity is represented by the bulk of P1 and P2, and purely `dry' activity by much of M2–M4. However, M1 and parts of M2 and M4 show evidence for simultaneous eruptions of differing style from adjacent vents and rapid variations in the extent and timing of magma:water interaction at each vent. The nature of the wall-rock lithics, and these rapid variations in inferred water/magma ratios imply interaction was occurring mostly at depths of ≤80 m, and the vesicularity patterns in juvenile clasts from these and the P beds imply that rapid degassing occurred at these shallow levels. We suggest that abrupt transitions between eruptive styles, in time and space, at Crater Hill were linked to changes in the local magma supply rate and patterns and vigour of degassing during the final metres of ascent.  相似文献   

12.
The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure–temperature–depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.  相似文献   

13.
Summary Following a recent hypothesis on the role of activated sodium chloride particles as possible condensation and sublimation nuclei, an analysis of data given byC. Junge on the chemical composition of aerosols, is made. It is established that all reported giant nuclei fall into three distinct categories of composition and that within each of these categories the ratio of the sums of anions to the sums of cations for constituents for which analyses were made, remains remarkably constant throughout the days of sampling, and for both geographic positions at which sampling has been carried out. A dependence of the hydroxide-carbonate content, on that of nitrate is also indicated in the «alkaline» nuclei. The system is treated as a saturated solution, and it is shown by the procedure of continuous variations that singularities occur at particular ratios of the prevalent chemical groups in solution, possibly indicating formation of complex species. This, together with the presence of double salts in the solid phase may be partly the reason for the constancy of ratio of sums in the groups of particles studied byJunge, while the grouping itself may depend on the origin and subsequent transformations of the particles.Parts of this paper were presented at the 174-th National Meeting of the American Meteorological Society, on the 29-th of January, 1959, in New York.  相似文献   

14.
The persistent activity of Yasur volcano, a post-caldera scoria cone in the southern Vanuatu Arc, along with the uniformity exhibited by its eruptive products, indicates that it is a “steady-state” volcano. This implies that rates of magma replenishment and tapping are in equilibrium. Examination of recently exposed tephra sequences suggests that Strombolian-style activity at Yasur has persisted in its current form for the last 630–850 years. Eruption of tephra with uniform grain size and texture throughout this period indicates invariant eruption magnitude and style. Based on tephra accumulation rates, a uniform, time-averaged eruption flux of ~410–480 m3 days?1 is estimated. Major and trace element analyses of glass shards and mineral grains from these tephra deposits show limited variation in magma composition throughout that time, consistent with a chemically buffered magma reservoir and models for steady-state volcanism. Similarly, mineral crystallisation temperature estimates are within error, suggesting the magma reservoir has retained a constant temperature through this time, while pressure estimates suggest shallow crystallisation. Eruptions appear to be driven by gas release, with small fluctuations in magma chemistry and eruptive behaviour governed by perturbations in volatile flux. This period of steady-state activity was preceded by ~600 years of higher-magnitude, lower-frequency eruptions during which less evolved compositions were erupted. Variation between these two styles of eruptive behaviour may be explained by a shift from a periodically closed to fully opened conduit, allowing more regular magma release and changes to degassing regimes. New radiocarbon ages suggest a period of irregular eruptive behaviour extending >1,400 year B.P. Overall, a transition from an irregular to a very steady magmatic system has occurred over the past ~2 kyr. Previously determined tectonic indicators for caldera resurgence in the area suggest revived magma replenishment after a hiatus following the caldera-forming Siwi eruption. This replenishment, while now supplying today’s constant activity, has not yet manifested itself in variations in composition or style/magnitude of eruptions.  相似文献   

15.
Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft.  相似文献   

16.
The determination of the coefficient of viscosity of eruptive products gives useful elements to the knowledge of possible variations of composition and physical conditions of the magmas.  相似文献   

17.
Mombacho is a deeply dissected volcano belonging to the Quaternary volcanic chain of Nicaragua. The southern, historic collapse crater (El Crater) currently hosts a fumarolic field with a maximum temperature of 121°C. Chemical and isotopic data from five gas-sampling field campaigns carried out in 2002, 2003 and 2005 highlight the presence of high-temperature gas components (e.g. SO2, HCl and HF), which indicate a significant contribution of juvenile magmatic fluids to the hydrothermal system feeding the gas discharges. This is strongly supported by the mantle-derived helium and carbon isotopic signatures, although the latter is partly masked by either a sedimentary subduction-related or a shallow carbonate component. The observed chemical and isotopic composition of the Mombacho fluids seems to indicate that this volcanic system, although it has not experienced eruptive events during the last centuries, can be considered active and possibly dangerous, in agreement with the geophysical data recorded in the region. Systematic geochemical monitoring of the fumarolic gas discharges, coupled with a seismic and ground deformation network, is highly recommended in order to monitor a possible new eruptive phase.  相似文献   

18.
This paper presents the results from the simulation of a phreatomagmatic eruption, in which the formation of the eruptive column is controlled by interaction between magma and water or ice. The process leads to intensive fragmentation of the magma and to mixing of ash and steam with ambient air. Such processes were typical of the initial phase in the April 2010 eruption of Eyjafjallajökull Volcano. It is hypothesized that phreatic explosions produce a dynamic pulsating system that consists of buoyant volumes of the mixture (thermals) that are forming at the base of the eruptive column. A 3-D simulation was used to assess two possible regimes in the evolution of the eruptive column: (1) continuous transport of the mixture into the eruptive column through its base for the case in which the thermals are generated at a high rate and (2) periodic flotation of the thermals whose diameters are comparable with that of the base of the eruptive column. It is shown that one can find a suitable selection of the initial concentrations of ash, steam, and air to achieve a satisfactory agreement between theory and actually observed heights of the gas–ash “clouds” that were formed during the Eyjafjallajökull eruption. The data for our calculations were taken from publications. We also investigated how wind and the changes in the initial parameters affect the process.  相似文献   

19.
This paper deals with sulfur, chlorine and fluorine abundances in the eruptive volcanic plume of the huge October 2002-January 2003 eruption of Mount Etna, aiming at relating the relevant compositional variations observed throughout with changes in eruption dynamics and degassing mechanisms. The recurrent sampling of plume acidic volatiles by filter-pack methodology revealed that, during the study period, S/Cl and Cl/F ratios ranged from 0.1-6.8 and 0.9-5.6, respectively. Plume S/Cl ratios increased by a factor of ∼10 as volcanic activity drifted from paroxysmal lava fountaining (mid- and late November) to passive degassing and minor effusion (early January), and then decreased to the low values (S/Cl=0.1) typical of the final stages of the eruption. Parallel variations in chlorine to fluorine ratios were also observed. A theoretical model is proposed for quantitative interpretation of these changes in plume composition. The model calculates the composition of a volatile phase exsolving from an ascending Etna magma, based on knowledge of solubilities and abundances in the undegassed melt of sulfur and halogens [T.M. Gerlach, EOS 72 (1991), 249, 254-255]. According to this model, degassing of Etnean basaltic melt at high pressures and depths (>100 MPa, 3 km) is likely to release a CO2+H2O-rich vapor phase with S/Cl molar ratios ∼1. Extensive sulfur and chlorine degassing from the melt would take place at shallower depth (P<20 MPa, 0.6 km), with S/Cl ratios in the vapor phase increasing as pressure drops to 0.1 MPa. Comparisons between model compositions and volcanic plume data demonstrate that the chemical trends observed during the eruption may be explained by increased degassing due to depressurization of a basaltic magma batch ascending toward the surface.  相似文献   

20.
The 26 October 2002–28 January 2003 eruption of Mt. Etna volcano was characterised by lava effusion and by an uncommon explosivity along a 1 km-long-eruptive fissure on the southern, upper flank of the volcano. The intense activity promoted rapid growth of cinder cones and several effusive vents. Analysis of thermal images, recorded throughout the eruption, allowed investigation of the distribution of vents along the eruptive fissure, and of the nature of explosive activity. The spatial and temporal distribution of active vents revealed phases of dike intrusion, expansion, geometric stabilization and drainage. These phases were characterised by different styles of explosive activity, with a gradual transition from fire fountaining through transitional phases to mild strombolian activity, and ending with non-explosive lava effusion. Here we interpret the mechanisms of the dike emplacement and the eruptive dynamics, according to changes in the eruptive style, vent morphology and apparent temperature variations at vents, detected through thermal imaging. This is the first time that dike emplacement and eruptive activity have been tracked using a handheld thermal camera and we believe that its use was crucial to gain a detailed understanding of the eruptive event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号