首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Extensive Permo-Carboniferous volcanism has been documented from the Bohemian Massif. The late Carboniferous volcanic episode started at the Duckmantian–Bolsovian boundary and continued intermittently until Westphalian D to Stephanian B producing mainly felsic and more rarely mafic volcanics in the Central Bohemian and the Sudetic basins. During the early Permian volcanic episode, after the intra-Stephanian hiatus, additional large volumes of felsic and mafic volcanics were extruded in the Sudetic basins. The volcanics of both episodes range from entirely subalkaline (calc-alkaline to tholeiitic) of convergent plate margin-like type to transitional and alkaline of within-plate character. A possible common magma could not be identified among the Carboniferous and Permian primitive magmas, but a common geochemical signature (enrichment in Th, U, REE and depletion in Nb, Sr, P, Ti) in the volcanic series of both episodes was recognized. On the other hand, volcanics of both episodes differ in intensities of Nb, Sr and P depletion and also, in part, in their isotope signatures. High 87Sr/86Sr (0.707–0.710) and low εNd (−6.0 to −6.1) are characteristic of the Carboniferous mafic volcanics, whereas low 87Sr/86Sr (0.705–0.708) and higher εNd ranging from −2.7 to −3.4 are typical of the Permian volcanics. Felsic volcanics of both episodes vary substantially in 87Sr/86Sr (0.705–0.762) and εNd (−0.9 to −5.1). Different depths of magma source or heterogeneity of the Carboniferous and Permian mantle can be inferred from variation in some characteristic elements of the geochemical signature for volcanics in some basins. The Sr–Nd isotopic data with negative εNd values confirm a significant crustal component in the volcanic rocks that may have been inherited from the upper mantle source and/or from assimilation of older crust during magmatic underplating and ascending of primary basic magma. Two different types of primary magma development and formation of a bimodal volcanic series have been recognized: (i) creation of a unique magma by assimilation fractional crystallization processes within shallow-level reservoirs (type Intra-Sudetic Basin) and (ii) generation and mixing of independent mafic and felsic magmas, the latter by partial melting of upper crustal material in a high-level chamber (type Krkonoše Piedmont Basin). A similar origin for the Permo-Carboniferous volcanics of the Bohemian Massif is obvious, however, their geochemical peculiarities in individual basins indicate evolution in separate crustal magma chambers.  相似文献   

2.
Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy   总被引:11,自引:0,他引:11  
L. Beccaluva  P. Di Girolamo  G. Serri 《Lithos》1991,26(3-4):191-221
The volcanism in the Roman Province of Italy can be modelled by the partial melting of heterogeneously enriched mantle sources. The heterogeneity was created by materials derived from a subducted slab which can still be traced geophysically beneath the central Apennines.

New petrographical and chemical data are presented for the high-K calc-alkaline and the shoshonitic volcanics of the Campania region. Primary magmas are present only locally. The existence of spatial zonation in the volcanism of Campania is documented for the first time. The shoshonitic, leucite-basanitic and leucititic volcanics of the Phlegraean Fields-Procida-Ischia and the Somma-Vesuvius areas are, at similar degrees of evolution, about two times richer in Nb and Ba than those of northwestern Campania and the Latium part of the Roman Province. Accordingly, distinct north-western and south-eastern subprovinces can be defined. The evaluation of enrichment factors, that is the abundance ratio between the average contents of each element in the relatively primitive lavas of the low K- and the high K suites, shows that the mantle sources prior to K-metasomatism were different in the two sub-provinces of the Roman Province. In the north-western one, they resembled the sources of ocean-island tholeiites and moderately enriched MOR-basalts. In the south-east they were similar to those of ocean island alkaline lavas and enriched MORB's.

Modelling based on K, P, Ce, Sr, Rb, Ba, Th, Sm, Eu, Gd, Y, Nb and 87Sr/86Sr was carried out. It indicates that the range of mantle sources of the volcanics in northwestern Campania and Latium can be modelled by the addition of 3 to 20% of materials derived by partial melting of carbonaceous pelites to a Sr-enriched mantle wedge comparable to the Honolulu mantle source least enriched in Nb.

The production of Sr-enriched mantle wedge requires either the action of fluids produced by dehydration of subducted oceanic crust, or a small amount of metasomatism caused by the presence of carbonatite melts.

The near absence of Ti, Ta, Nb, Yb and the highly fractionated REE in the metasomatizing component requires the presence of residual garnet and accessory Ti-rich minerals during the partial melting of the subducted sediments. The writers propose that the mantle wedge overlying the subducted slab was hybridized by melts produced by partial fusion of subducted material derived from the continental crust, probably sediments. This process played a dominant role in the generation of the mantle sources from which the high-K calc-alkaline, shoshonitic, leucite-basanitic and leucititic magmas of the Roman Province were derived.  相似文献   


3.
Average 87Sr/86Sr ratios for lavas from Quaternary and Pleistocene volcanoes of the Kurile island arc, NW Pacific, decrease from 0.7035 in the south to 0.7032 in the north. The northern Kuriles are characterised by K2Oricher volcanics and by an older crust. Varying ratios show no simple relation to crustal thickness or geochemical indicators of crustal contamination. This is thought to reflect the immature character of the crust — its simatic composition, low Rb/Sr ratios and youthfulness. Older lavas from the Kuriles (Lower Tertiary, Miocene) have similar or slightly higher 87Sr/86Sr ratios; some have suffered slight alteration and possibly crustal contamination. Quaternary volcanics from the Kurile and Aleutian arcs have the lowest 87Sr/86Sr ratios of all circum-Pacific arcs and this may be ascribed to (a) the isotopic individuality of the landward North American plate and/or (b) the high degree of mechanical coupling between the Pacific and North American plates reducing the amount of subducted 87Sr-rich sediments and seawater. An isotopic boundary between island arcs is located in central Hokkaido. The primary basaltic magmas of the Kuriles were derived from mantle recently contaminated by radiogenic Sr. Subsequent fractionation to andesites and dacites occurred by closed-system fractional crystallization.  相似文献   

4.
New geochemical and isotopic data are reported for calc-alkaline (CA) volcanics of the Aeolian arc. Three main groups are recognized: the Alicudi and Filicudi volcanics in the western part of the arc; the Panarea, Salina and Lipari (henceforth termed PSL) volcanics in the central part of the arc and the Stromboli suite which makes up the eastern part of the arc. Each group is characterized by distinctive isotopic ratios and incompatible element contents and ratios. 87Sr/86Sr values (0.70352–0.70538) increase from west to northeast, and are well correlated with 143Nd/144Nd (Nd from +4.8 to -1.5). Pb isotope ratios are fairly high (6/4=19.15–19.54; 7/4=15.61–15.71; 8/4=38.97–39.36), with a general increase of 7/4 and 8/4 values from Alicudi to PSL islands and Stromboli. LILE contents and some incompatible element ratios (e.g. Ba/La, La/Nb, Zr/Nb, Rb/Sr) increase from the western to the central part of the arc, whereas HFSE and REE abundances decrease. Opposite variations are often observed in the volcanics toward the north-east from PSL islands. To account for these features and the decoupling observed between isotopic compositions and incompatible element abundances and ratios, it is suggested that a mantle source with affinities to the MORB source is metasomatized by slab-derived, crustal components. The proportion of crustal material entrained in the mantle source increases from Alicudi to Stromboli, according to the Sr and Nd isotope variations. It is also proposed that slab derived hydrous fluids play an important role, but which is variable in different sectors of the arc. This is attributed to the metasomatizing agent having variable fluid/melt ratios, reflecting different types of mass transfer from the subducted contaminant (probably pelagic sediments) to the mantle wedge. Thus, it is suggested that the slab derived end-member has a high hydrous fluid/melt ratio in the PSL mantle source and a correspondingly lower ratio in the Alicudi and Stromboli sources.  相似文献   

5.
The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr–Nd–Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788–18.851 for 206Pb/204Pb, 15.685–15.701 for 207Pb/204Pb, and 39.048–39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc-alkaline samples have intermediate isotopic values between ultrapotassic plagioclase leucitites and shoshonites, but the lowest levels of incompatible trace element contents. It is argued that ultrapotassic magmas were generated in a modified lithospheric mantle after crustal-derived metasomatism. Interaction between the metasomatic agent and lithospheric upper mantle produced a low-melting point metasomatised veined network. The partial melting of the veins alone produced pre-caldera leucite-bearing ultrapotassic magmas. It was possibly triggered by either post-collisional isotherms relaxation or increasing T°C due increasing heat flow through slab tears. Shoshonitic magmas were generated by further melting, at higher temperature, of the same metasomatic assemblage with addition 10–20% of OIB-like astenospheric mantle material. We suggest that addition of astenospheric upper mantle material from foreland mantle, flowing through slab tearing after collision was achieved. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.

Results of isotope Sr, Ns, and O analyses of volcanic rocks from the Uda sector of the West Transbaikal Rift Zone have allowed estimation of the character of interaction of their parental mantle melts with crustal rocks. The smallest magnitude of this interaction has been found in the compositions of Late Cretaceous (83–70 Ma) volcanics, the geochemical and isotope markers of which suggest their derivation from a moderately enriched mantle compositionally resembling OIB sources. The Early Cretaceous volcanics were derived from mantle sources that included a mantle enriched by subduction. While ascending through the crust, the parental melts of the Uda Complex (130–111 Ma) were contaminated by the lower crust matter. The Zazin Complex magmas (143–135 Ma) have features suggesting their interaction with upper crustal granitoids of the Angara–Vitim Batholith.

  相似文献   

7.
We present the geochemical and isotopic characteristics of Pleistocene to Holocene olivine-bearing mafic rocks from the Sierra de Chichinautzin (SCN) volcanic field, located in the central part of the Mexican Volcanic Belt (MVB). Some have geochemical characteristics of primary magmas, and their MORB-normalized patterns are similar to those displayed by extension-related mafic rocks. The SCN primary magmas show a limited range in 87Sr/86Sr (0.70348-0.70397; average(n = 7) = 0.70370 ± 0.00019), and 143Nd/144Nd (0.51279-0.51294; average(n = 6) = 0.51288 ± 0.00006).~New mineral and whole-rock chemical data allow estimation of eruption temperatures and assure the near-primary nature of the studied samples. Equilibrium temperatures for the primary magmas were in the range 1070-1150°C. Trace-element concentration data for near-primary magmas from the SCN are used to develop a partial melting inversion model, the first for any area of the MVB. The source composition calculated by this inversion method shows an enrichment in highly incompatible elements (e.g., [CLa/CYb]n ~2.2), where []n represents mande-normalized values), without a decoupling between LILE, REE, and HFSE. This relationship supports a rift-related origin for SCN volcanism. The calculated REE composition of the mantle source is comparable to that observed in mande xenoliths of central Mexico. Concentration ratios of incompatible elements have also been used to infer 7-16% as the approximate range in degree of partial melting of the mantle. These results reinforce the hypothesis that SCN mafic magmatism reflects partial melting of an enriched lithospheric mantle in an extensional tectonic setting, precluding participation of the subducted Cocos plate in the genesis of these magmas.  相似文献   

8.
Ischia, one active volcano of the Phlegraean Volcanic District, prone to very high risk, is dominated by a caldera formed 55 ka BP, followed by resurgence of the collapsed area. Over the past 3 ka, the activity extruded evolved potassic magmas; only a few low-energy explosive events were fed by less evolved magmas. A geochemical and Sr–Nd–O isotope investigation has been performed on minerals and glass from products of three of such eruptions, Molara, Vateliero, and Cava Nocelle (<2.6 ka BP). Data document strong mineralogical, geochemical, and isotopic heterogeneities likely resulting from mingling/mixing processes among mafic and felsic magmas that already fed the Ischia volcanism in the past. Detailed study on the most mafic magma has permitted to investigate its origin. The mantle sector below Ischia underwent subduction processes that modified its pristine chemical, isotopic, and redox conditions by addition of ≤1 % of sediment fluids/melts. Similar processes occurred from Southeast to Northwest along the Apennine compressive margin, with addition of up to 2.5 % of sediment-derived material. This is shown by volcanics with poorly variable, typical δ18O mantle values, and 87Sr/86Sr progressively increasing toward typical continental crust values. Multiple partial melting of this modified mantle generated distinct primary magmas that occasionally assimilated continental crust, acquiring more 18O than 87Sr. At Ischia, 7 % of Hercynian granodiorite assimilation produced isotopically distinct, K-basaltic to latitic magmas. A SW–NE regional tectonic structure gave these magmas coming from large depth the opportunity to mingle/mix with felsic magmas stagnating in shallower reservoirs, eventually triggering explosive eruptions.  相似文献   

9.
Angelo Peccerillo 《Lithos》1998,43(4):267-279
The Pleistocene intra-Apennine volcanic (IAV) centres occurring east of the potassium-rich Roman comagmatic province show variable petrological and geochemical composition. Some rocks have a strongly undersaturated ultrapotassic kamafugitic affinity with K2O/Na2O=8–20, whereas the rocks from the southern center of Mt. Vulture are still strongly undersaturated in silica but are enriched in both Na2O and K2O with K/Na around unity. Carbonate-rich pyroclastic rocks, believed to represent carbonatitic magmas, are found in the IAV centers. Kamafugites have high abundances of LILE and high LILE/HFSE ratios, and their incompatible element patterns resemble closely those of ultrapotassic rocks from the adjoining Roman province. The Vulture volcanics also display high contents of LILE, but their LILE/HFSE ratios are intermediate between intraplate alkaline rocks and kamafugites. The carbonate-rich rocks exhibit an exotic mineralogy and high enrichments in LILE, which speaks for a carbonatitic affinity. However, they have similar incompatible element patterns but consistently lower abundances of almost all the elements than the associated silicate volcanics. These data favour the hypothesis that the IAV carbonate rocks may represent mixtures of silicate magmas and geochemically depleted carbonate material. The sedimentary carbonates that crop out extensively along the Apennine chain may be the source of barren carbonate material. Overall, geochemical data of IAV centres and of the rocks from the Roman province display strong geochemical and isotopic evidence of being generated in an upper mantle that was modified by addition of upper crustal material brought down by subduction processes. A possible exception is represented by Mt. Vulture which, however, occurs east of the main axis of the Apennines, on the western margin of the foreland Adria plate. The occurrence of strongly undersaturated alkaline rocks requires magma generation at high pressures and . This is in agreement with the hypothesis that subduction processes under the Apennines occurred by consumption of poorly hydrated thinned or delaminated continental crust.  相似文献   

10.
Summary ?Major and trace element contents and Sr–Nd isotope ratios of selected volcanics of Pliocene age from the Almopia area, central Macedonia, Greece, have been determined. These rocks are mainly distinguished as two groups based on geographical, petrological and isotopic data: a) the east–central western group (E–CW) and b) the south western group (SW). The absence of contemporaneous basic volcanics in the Almopia area coupled with the considerable scatter of elements in variation diagrams rule out fractional crystallization as the dominant differentiation process. Instead, disequilibrium textures along with the positive correlation of Sr-isotope ratios with differentiation suggest mixing between a basic and an acid component combined with assimilation and fractionation. The spider diagrams of the most silica-poor volcanics show evidence of subduction-related processes, indicating that the parental magmas may have been derived from partial melting of mantle wedge enriched in LILE and LREE by subducted slab-derived fluids. Previous data on the oxygen isotope composition of the same volcanics are consistent with this genetic hypothesis. Lastly, the relatively high 87Sr/86Sr and low 143Nd/144Nd ratios (0.7080 and 0.512370, respectively) of the volcanic sample inferred to be compositionally the closest one to the parental magma of Almopia rocks suggest that the incompatible element enrichment of the mantle source is old, probably of Proterozoic age. Received December 12, 2001; revised version accepted June 20, 2002 Published online November 29, 2002  相似文献   

11.
Zircon dating, geochemical and Nd-Sr isotopic analyses have been determined for samples from two granitic intrusions in the Talate mining district, Chinese Altay. Our data suggest that these intrusions were emplaced from 462.5 Ma to 457.8 Ma. These rocks have strong affinity to peralumious S-type granite and are characterized by prominent negative Eu anomalies(δEu=0.20–0.35), strong depletion in Ba, Sr, P, Ti, Nb, Ta and positive anomalies in Rb, Th, U, K, La, Nd, Zr, Hf. Nd-Sr isotopic compositions of the whole rock show negative εNd(t) values(-1.21 to-0.08) and Mesoproterozoic Nd model ages(T2 DM=1.20–1.30 Ga). Their precursor magmas were likely derived from the partial dehydration melting of Mesoproterozoic mica-rich pelitic sources and mixed with minor mantle-derived components, under relatively low P(≤1 kbar) and high T(746–796°C) conditions. A ridge subduction model may account for the early Paleozoic geodynamic process with mantle-derived magmas caused by Ordovician ridge subduction and the opening of a slab window underplated and/or intraplated in the middle–upper crust, which triggered extensive partial melting of the shallow crust to generate diverse igneous rocks, and provided the heat for the crustal melting and juvenile materials for crustal growth.  相似文献   

12.
Subduction-related Quaternary volcanic rocks from Solander and Little Solander Islands, south of mainland New Zealand, are porphyritic trachyandesites and andesites (58.20–62.19 wt% SiO2) with phenocrysts of amphibole, plagioclase and biotite. The Solander and Little Solander rocks are incompatible element enriched (e.g. Sr ~931–2,270 ppm, Ba ~619–798 ppm, Th ~8.7–21.4 ppm and La ~24.3–97.2 ppm) with MORB-like Sr and Nd isotopic signatures. Isotopically similar quench-textured enclaves reflect mixing with intermediate (basaltic-andesite) magmas. The Solander rocks have geochemical affinities with adakites (e.g. high Sr/Y and low Y), whose origin is often attributed to partial melting of subducted oceanic crust. Solander sits on isotopically distinct continental crust, thus excluding partial melting of the lower crust in the genesis of the magmas. Furthermore, the incompatible element enrichments of the Solander rocks are inconsistent with partial melting of newly underplated mafic lower crust; reproduction of their major element compositions would require unrealistically high degrees of partial melting. A similar argument precludes partial melting of the subducting oceanic crust and the inability to match the observed trace element patterns in the presence of residual garnet or plagioclase. Alternatively, an enriched end member of depleted MORB mantle source is inferred from Sr, Nd and Pb isotopic compositions, trace element enrichments and εHf ? 0 CHUR in detrital zircons, sourced from the volcanics. 10Be and Sr, Nd and Pb isotopic systematics are inconsistent with significant sediment involvement in the source region. The trace element enrichments and MORB-like Sr and Nd isotopic characteristics of the Solander rocks require a strong fractionation mechanism to impart the high incompatible element concentrations and subduction-related (e.g. high LILE/HFSE) geochemical signatures of the Solander magmas. Trace element modelling shows that this can be achieved by very low degrees of melting of a peridotitic source enriched by the addition of a slab-derived melt. Subsequent open-system fractionation, involving a key role for mafic magma recharge, resulted in the evolved andesitic adakites.  相似文献   

13.
Petrographic, petrological and geochemical studies have demonstrated the presence of three distinctive basic volcanic suites in the Eastern Goldfields Province, Yilgarn Block, Western Australia. These are termed the high magnesian series basalts (HMSB), the low magnesian series basalts (LMSB) and the siliceous high magnesian series basalts (SHMSB).The HMSB and SHMSB constitute differentiation series which contain both high MgO (9.5–14 wt.%) and low MgO (<9.5 wt.%) members. These suites are commonly characterized by igneous textures indicative of very rapid crystallization suggesting high eruption temperatures. This feature clearly distinguishes those low MgO members of HMSB which contain amphibole pseudomorphs after spherulitic-textured pyroxene from compositionally similar LMSB. The LMSB are generally characterized by an intergranular texture consisting of plagioclase laths and interstitial amphibole pseudomorphs after pyroxene grains. Variolitic-textured basalts are common and appear to be restricted to the SHMSB suite of basic volcanics.The HMSB and LMSB were derived from source mantle regions which were variably depleted in the incompatible elements. Archaean komatiites were derived from similarly depleted source regions and it is argued that the main petrogenetic difference between these three volcanic suites was the degree of partial melting from which they were derived. The depleted nature of the source regions may have been induced by earlier small degree (< 5%) partial melting events with subsequent extraction of a proportion of that melt. Variations in both the degree of such melting, and the proportions of melt removal, could induce considerable heterogeneity of incompatible elements in the Archaean upper mantle.Source mantle regions of the SHMSB were variably enriched in the incompatible elements and water and parental magmas of the SHMSB were derived from moderately hydrous conditions of partial melting.The relative proportions of each basalt suite varies considerably between the layered successions examined. For example, the basic volcanics overlying the komatiites at Kambalda are SHMSB, while the footwall volcanics consist predominantly of HMSB with subordinate LMSB. However, the Norseman succession, where no ultramafic volcanics are known to occur, is comprised mainly of LMSB with a smaller proportion of HMSB.  相似文献   

14.
Evidence for heterogenes primary MORB and mantle sources,NW Indian Ocean   总被引:1,自引:0,他引:1  
Basalts from 5 Deep Sea Drilling Project (DSDP) sites in the northwest Indian Ocean (Somali Basin and Arabian Sea) have general geochemical features consistent with a spreading origin at the ancient Carlsberg Ridge. However, compared to most MORBS from other oceans they have low normative olivine, TiO2, and Zr contents. There is no evidence that the mantle source of these northwest Indian Ocean basalts was enriched in incompatible elements relative to the Atlantic and Pacific ocean mantles. In detail, incompatible element abundances in these DSDP basalts establish that they evolved from several compositionally distinct parental magmas. In particular, basalts from site 236 in the Somali Basin have relatively high SiO2 and low Na, P, Ti, and Zr contents. These compositional features along with low normative olivine contents are similar to those proposed for melts derived by two-stage (or dynamic) melting. Published data also indicate there is no enrichment in incompatible elements at the southwest Indian Ocean triple junction, although southwest Indian Ocean basalts have slightly higher 87Sr/86Sr than normal Atlantic MORB. The data suggest that there are significant subtle geochemical variations in the Indian Ocean mantle sources, but are insufficient to show whether these variations have a systematic temporal or geographic distribution.  相似文献   

15.
Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history spanning the entire Quaternary period. Magma origin and evolution of Tengchong Cenozoic volcanic rocks were studied on the basis of Nd-Sr-Pb isotope and major and trace element data from different eruptions in the Ma’anshan area. Different samples within one eruption show relative identical lithologies, chemical and isotopic compositions. However, the geochemical features for the five eruptions are distinct from each other. These volcanic rocks show low Mg# values (<45), moderate to high fractionation of LREEs and HREEs, and enrichment of Pb and Ba and depletion of Nb. Tengchong Cenozoic volcanic rocks were derived from an enriched mantle based on Nd-Sr-Pb isotopic studies. And lines of evidence show that crustal contamination should be involved before the eruption of different periods of Tengchong Cenozoic volcanic rocks. Older subducted components may be responsible for adakite recycling at various stages of evolution, which results in the origin of the enriched mantle source magma accounting for the isotopic features of Tengchong Cenozoic volcanic rocks. Segregated primitive magma pulsating injected into magma chamber, fractional crystallized and contaminated with crust component. Finally, magmas with distinct chemical and isotopic compositions for each eruption formed. The extension of the northeast segment of the Yingjiang tectonic belt triggered the pulsating eruption of the Cenozoic volcanics in the Tengchong area.  相似文献   

16.
《International Geology Review》2012,54(10):1234-1252
ABSTRACT

The lower Miocene (~22–19 Ma) volcanic units in the NE–SW-trending Tunçbilek–Domaniç basin, located in the northeastern-most part of the Neogene successions in western Anatolia, are composed of (1) high-K, calc-alkaline dacitic to rhyolitic volcanic rocks of the Oklukda?? volcanics; (2) calc-alkaline low-MgO (evolved) basalts; and (3) high-MgO mildly alkaline basalts of the Karaköy volcanics. Sr isotopic ratios of the volcanic units increase from high-MgO (~0.7055–0.7057) to low-MgO basaltic rocks (~0.7066–0.7072) and then to dacitic-rhyolitic rocks (0.7081–0.7086). Geochemical features of the volcanic rocks reveal that the calc-alkaline evolved basalts were formed by mixing of basic and acidic magmas.

Geochemical studies in the last decade show that the Miocene mafic volcanic rocks in western Anatolia are mainly composed of high-MgO shoshonitic-ultrapotassic rocks (SHO-UK), of which mantle sources were variably, but also intensely metasomatized with crustally derived materials during collisional processes in the region. However, geochemical comparison of the high-MgO basalts of the Karaköy volcanics with the SHO-UK rocks in this region reveal that that the former has too low 87Sr/86Sr(i) and high 143Nd/144Nd(i) ratios, with lower LILE and LREE abundances, which are firstly described here. These features are interpreted to be derived from more slightly enriched lithospheric mantle sources than that of the SHO-UK. Accepting the SHO-UK rocks in the region were derived from mantle sources that had been metasomatized by northward subduction of crustal slices during Alpine collisional processes, it is proposed that the imbrication and direct subduction of crustal slices were not reached to, and were limited in the mantle domains beneath the basin. The dacites of the Oklukda?? volcanics might be formed either by high-degree melting of the same sources with the SHO-UK, or by melting of the lower crustal mafic sources as previously proposed, and then evolved into the rhyolites via fractional crystallization with limited crustal contribution.  相似文献   

17.
The paper presents major and trace element data and mineral compositions for a series of foiditic-tephritic to phonolitic rocks coming from Monte Vulture, Southern Italy, and investigates their origin, evolution and relationship with the other centres of the Roman province.Major and trace element variation in the foiditic to tephritic suite agrees with a hypothesis of evolution by simple crystal/liquid fractionation, whereas the early erupted phonolitic trachytes and phonolites have geochemical characteristics which do not support their derivation from tephritic magma by crystal fractionation. Foiditic and phonolitic rocks have mineral compositions which are interpreted as indicating magma mixing. However geochemical evidence shows that this process did not play an important role during the magma evolution.The Vulture rocks have compositional peculiarities such as high abundance of Na2O, CaO, Cl and S, when compared with other Roman volcanics. Instead, the distribution of incompatible elements is similar to those of Roman rocks, except for a lower content of Rb and K, higher P and lower Th/Ta and Th/Nb ratios which are still close to the values of arc volcanics.The high contents of Na, Ca and of volatile components are tentatively attributed to the interaction of magma with aqueous solutions, rich in calcium sulphate and sodium chloride, related to the Miocene or Triassic evaporites occurring within the sedimentary sequence underlying the volcano. The distribution pattern of the incompatible elements is interpreted as indicative of magma-forming in a subduction modified upper mantle and of the peculiar location of M. Vulture.  相似文献   

18.
18O/16O,87Sr/86Sr and chemical analyses were made on 39 lavas and ignimbrites from M. Vulsini, the most northerly district of the K-rich Quaternary Roman Province of Italy. These rocks belong mainly to the undersaturated, leucite-bearing (High-K) series, but also included are samples from the less abundant, SiO2-saturated, hypersthene-(quartz)-normative (Low-K) series. The effects of post-eruption alteration on the 18O of these lavas were taken into account by analyzing phenocrysts or by using the extrapolation procedure developed for the nearby Alban Hills center. Because of the high Sr contents (500–2400 ppm), the87Sr/86Sr ratios of these rocks were little affected by such alteration processes. The M. Vulsini volcanics have Sr- and O-isotopic ratios much less uniform, and on the average much higher, than at any of the other volcanic centers of the province:87Sr/86Sr=0.7097 to 0.7168; 18O=6.5 to 13.8. This is attributable to the fact that M. Vulsini is one of the sites of greatest crustal assimilation and hybridism between K-rich Roman magmas and SiO2-rich Tuscan anatectic magmas. The High-K series parent magmas at M. Vulsini had a very high and uniform87Sr/86Sr=0.7102 to 0.7104, and a somewhat more variable 18O=+5.5 to +7.5; they must have come from an upper mantle source region previously metasomatically enriched in87Sr and LIL elements. These18O/16O and87Sr/86Sr ratios are identical to the parent magma at the Alban Hills, 120 km to the south, where Low-K lavas are absent. Low-K series magmas at M. Vulsini originated from a lower-87Sr source region than the High-K series (<0.7097); a similar relationship is observed in all of the other localities in Italy where the two magma series coexist.Contribution No. 4167, Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

19.
Major and trace element and 143Nd/144Nd (0.51209–0.51216) and 87Sr/86Sr (0.70879–0.71105) isotope analyses are presented on a representative group of lavas from the Vulsini district of the Roman magmatic province. Three distinct series are identified; the high-K and low-K series are similar to those described from other Italian volcanoes, while the third is represented by a group of relative ly undifferentiated leucite basanites which are thought to be near-primary mantle melts. Major and trace element variations within the high-K series are consistent with fractional crystallisation from a parental magma similar to the most magnesian leucitites. Crustal contamination resulted in an increase in 87Sr/86Sr with increasing fractionation, but it was superimposed on magmas which had already inherited a range of incompatible element and isotope ratios from enrichment processes in the sub-continental mantle. These are reviewed using the available results from Vulsini, Roccamonfina and Ernici. Transition element abundances and Ta/Yb ratios indicate that the pre-enrichment mantle was similar to that of E-type MORB, and that these elements were not mobilised by the enrichment process. Mixing calculations suggest that three components were involved in the enrichment process; mantle comparable with the source of MORB, and two other components rich in trace elements. One, the low-K component, had high Sr/Nd, Th/Ta and Ba/Nb and no europium anomaly while the second had lower Sr/Nd, a negative europium anomaly and very high Th/Ta. It was also characterised by low Nb/Ba and high Rb/Ba ratios, similar to those reported from phlogopite-rich peridotite xenoliths. The trace element enrichment processes are therefore thought to have occurred in the mantle wedge above a subduction zone with the trace element characteristics of the high-K end-member reflecting the subduction of sediments and the stabilisation of mantle phlogopite.  相似文献   

20.
The variations in trace element abundances of a suite of alkali-olivine basalts from the Big Pine volcanic field, California, have been ‘inverted’ following the method of Hofmann and co-workers to obtain source concentration and distribution coefficient data. The high Mg-numbers and ne-normative mineralogy of these lavas allow a simple correction to be made for fractional crystallisation, and together with a limited range in 87Sr/86Sr (0.7056–0.7064), suggest derivation from a relatively homogeneous source region. Negative correlations between SiO2 and P2O5, and SiO2 and Rb in the calculated primary magmas imply that both major and trace elements vary in a coherent fashion as a function of the degree of partial melting. The Big Pine lavas are characterised by high ratios of large-ion lithophile to high-field strength elements (Ba/Nb>60), and the inverse procedure demonstrates that this reflects source concentrations, as opposed to a mineralogical control. The calculated mantle source is further characterised by generally high abundances of Sr, Ba, K, and Th relative to Nb and Ta which imply that incompatible element enrichment of the source occurred above a subduction zone. A model Sm/Nd age of 1.8 Ga for this enrichment coincides with the regional crustal formation age. Such features imply that both the major and trace element components of the Big Pine lavas are derived from within lithospheric mantle, perhaps mobilised by the high geothermal gradients which characterise the extensional environment of the Basin and Range Province. A comparison with other Cenozoic mafic lavas throughout the western United States suggests that a substantial proportion of the mantle lithosphere in this area has similar chemical characteristics to the source of the Big Pine lavas. If this is the case, then it implies that convergent margins represent an important tectonic environment for the formation of lithospheric mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号