首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearly 2500 shock crossings from HEOS-1, HEOS-2 and 5 IMP spacecraft, covering most of the northern and part of the southern bow shock surface for X values X > ? 20 RE, have been used to carry out a detailed study of the three-dimensional shape and location of the bow shock. The influence of the different solar wind conditions has been reduced by normalising the observed crossings to an average solar wind dynamical pressure (N0 = 9.4 cm?3, V0 = 450 kms?1). It has been shown that the shock surface is symmetric with respect to the ecliptic plane and intersects the coordinate axes at 11.9 RE (X), + 27.0 and ? 22.9 RE (Y), + 23.9 and ? 24.5 RE (Z) for the average dynamical pressure (N0 = 9.4 cm?3, V0 = 450kms?1, with MA = 9.3, MMS = 6.1). The observed aberration of the shock surface is 8.9° ± 1°, i.e. 5.1° larger than the aberration predicted from the Earth's motion. This asymmetry around the solar wind apparent direction is described by equation (6) for different Mach numbers MA and confirms the predictions of Walters [J. geophys. Res. 71, 1319 (1964)] and Michel [J. geophys. Res. 70, 1 (1965)].The magnetosheath thickness is 3.3 RE along the X-axis, 11.4 RE (+ Y), 8.7 RE (? Y), 9.9 RE (+Z) and 10.9 RE along the negative Z axis.  相似文献   

2.
Stanley F. Dermott 《Icarus》1979,37(1):310-321
If the orbital resonances in the Jovian and Saturnian satellite systems are the result of orbital evolution due to tidal dissipation then the present rates of energy dissipation (Edot) are >2 × 1020 ergs sec?1 (Jupiter) and ?2 × 1016 ergs sec?1 (Saturn). These values of Edot can be accounted for if the planets have rocky cores with volumes equal to those suggested by current models of the interiors and if the material of these cores is both solid and imperfectly elastic (Qe ~ 34). The calculated values of Qe are not strongly dependent on either the rigidity of the core or the densities of the core and the mantle. Thus, these quantities need not be known precisely. It may be significant that approximately the same value of Qe is needed for all the major planets (Jupiter, Saturn, and Uranus) even though the values of Edot for these planets differ by a factor greater than 104.  相似文献   

3.
Results of impact fragmentation experiments for basalts and pyrophyllites are reported. Aluminum cylindrical projectiles were impacted on cubic basalt and pyrophyllite targets at velocities of 70 to 990 m/sec. The targets and projectiles were 20 g to 3.3 kg and 2 to 20 g in weight respectively. Weights of the fragments produced by impacts were measured and the size distributions of fragments were examined. Data of the largest fragment mass (mL) normalized to the original target mass (Mt), mL/Mt, correlate better with the nondimensional impact stress, PI, a new scaling parameter introduced by H. Mizutani, Y. Takagi, and S. Kawakami (1984, in preparation) than the conventional projectile's kinetic energy per unit target mass, E/Mt, used in the previous studies. All the mL/Mt data for basalts obtained in the present study are summarized by mL/Mt = 2.95 × 10?2PI?1 where PI = P0L3/YR3, P0 = peak shock pressure, L = projectile size, R = target size and Y = material strength of target. For aluminum targets, however, the mL/Mt is 2.5 orders of magnitude larger than that for brittle targets at impacts with the same PI. Size distributions of fragments expressed in a log N - log (m/Mt) diagram divided into three regimes bounded by two inflection points. In each regime the curve is expressed by N (>mMt) = A (mMt)?a. The slopes, a, of the log N - log (mMt) curves in the regimes of a large and a medium size range are positively correlated with the nondimensional impact stress, PI, and expressed as a = C3 + a3log PI. The slopes, a, in the smallest size range are, on the other hand, nearly constant and have values of 0.5 to 0.7 (12?23). Present results indicate that the impact fragmentation is scaled well by the new scaling parameter, PI, of Mizutani, Takagi, and Kawakami and that the present experimental data may shed new light on planetary impact processes.  相似文献   

4.
Joseph A. Burns 《Icarus》1975,25(4):545-554
The angular momentum H is plotted versus mass M for the planets and for all asteroids with known rotation rates and shapes, primarily taken from D. C. McAdoo and J. A. Burns [Icarus18, 285–293 (1973)]. An asteroid's angular momentum is derived from its rotation rate as determined by the period of its lightcurve, its shape as indicated by the lightcurve amplitude, and where possible its size as given by polarimetry or radiometry. The asteroid is assumed to be rotating about its axis of maximum moment of inertia. As previously found by F. F. Fish [Icarus7, 251–256 (1967]) and W. K. Hartmann and S. M. Larson [Icarus7, 257–260 (1967)], H is approximately proportional to M53, which shows that the asteroids and most planets spin with nearly the same rate. The very smallest asteroids on the plot deviate from the above reaction, usually containing excess angular momentum. This suggests that collisions have transferred substantial angular momentum to the smallest asteroids, perhaps causing their internal stress states to be substantially modified by centrifugal effects.The forces produced by gravitation are then compared to centrifugal effects for a rotating, triaxial ellipsoid of density 3 g cm?3. For all asteroids with known properties the gravitational attraction is shown to be larger than the centrifugal acceleration of a particle on the surface: thus the observed asteroid regoliths are gravitationally bound. Poisson's equation for the gravitational potential is investigated and it is shown by mathematical and physical arguments that any arbitrarily shaped ellipsoid with the attractive surface force boundary condition found above will have only attractive internal forces. Thus the internal stress states in asteroids are always compressive so that asteroids could be internally fractured without losing their integrity.  相似文献   

5.
The motion of fragments following a catastrophic destruction by either a normal or an oblique impact at 2.5–2.9 km sec?1 into cubic and spherical basalt targets was studied with a high-speed framing camera. Velocities at the antipodes of the targets vary as (E/M)0.75 (E = impact energy; M = target mass) and are lower than 200 m sec?1 at E/M ? 109 ergs g?1. Excluding fine-grained particles from the impact site, 70 to 80% by mass fraction of the fragments have velocities lower than twice the antipodal velocity. Comminution and ejection energies wasted in this mass fraction were a few percent of the impact energy at E/M ? 5 × 107 ergs g?1. During a catastrophic impact into asteroids some of the fragmented bodies can be reconcentrated by mutual gravitation.  相似文献   

6.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

7.
It is proposed that a new mechanism—angular momentum drain—helps account for the relatively slow rotation rates of intermediate-sized asteroids. Impact ejecta on a spinning body preferentially escape in the direction of rotation. This material systematically drains away spin angular momentum, leading to the counterintuitive result that collisions can reduce the spin of midsized objects. For an asteroid of mass M spinning at frequency ω, a mass loss δM correspond to an average decrease in rotation rate δω ≈ ωδMM. A. W. Harris' (1979), Icarus40, 145–153) theory for the collisional evolution of asteroidal spins is significantly altered by inlusion of this effect. While the modified theory is still somewhat artificial, comparison of its predictions with the data of S. F. Dermott, A. W. Harris, and C. D. Murray (1984, Icarus57, 14–34) suggests that angular momentum drain is essential for understanding the statistics of asteroidal rotations.  相似文献   

8.
The change of energy of a collisionless, two-fluid plasma consists of the adiabatic gain or loss of energy, which is due to the work done by the electromagnetic forces, and of the non-adiabatic change associated with the presence of the “rest” field E1 = E + (1c)V×B. The non-adiabatic gain or loss of energy per unit ti may be expressed by the relation
Q=E·i+ceNB2f?×f
where i is the density of conductive current, N the ion number-density, and f (f?) the sum of inertia and pressure divergence of ions (electrons). Symbols of parallelism refer to the direction of B.A special case of non-adiabatic energization of a slowly convecting plasma sheet plasma is discussed in some detail. Regardless of the value of V, the non-adiabatic energization may significantly exceed any conceivable energization associated with the electric field ?(1c) V × B.  相似文献   

9.
The motion of charged particles is examined in the case of a homogeneous magnetic field B together with an orthogonal electric field E, which has a gradient ▽E parallel to E. If
B2q2m2 ? q▽Em > 0
, the particles drift at right angles to E and B with a modified gyrofrequency and produce a current in that direction. If
B2q2m2 ? q▽Em < 0
, the particles not only drift in the direction of E × B but are also accelerated in the direction of E, in which direction they also produce a current.  相似文献   

10.
《Planetary and Space Science》1987,35(8):1009-1020
Latitudinal structures of discrete arcs are modelled as a consequence of the quasi-steady magnetosphere-ionosphere coupling involving viscous interaction between sunward and anti-sunward plasma flows in the magnetosphere. The quasi-steady state in the magnetosphere and ionosphere coupling is described by the magnetospheric and ionospheric current conservation and the field-aligned currentpotential relation assuming adiabatic electron motion along field lines. The upward and downward fieldaligned currents are assumed to be stably maintained by vorticity-induced space charges in the region of plasma flow reversal, where divergence of the magnetospheric electric field E is negative and positive, respectively. By introducing the effective conductance Σdc arising from the anomalous viscosity, a specific relation between the dc field-aligned current density J and the magnetospheric electric field E is derived as J=−ΣdcdivE. Sufficiently large potential drops to accelerate auroral electrons are shown to exist along the auroral field lines originating from the flow reversal region with div E < 0. It is shown that the latitudinal structure of a discrete arc is primarily determined by the magnetospheric potential structure and the characteristic width is on the order of 10 km at the ionospheric altitude.  相似文献   

11.
A large number of shock recovery experiments that address the ease of impact melt formation as a function of peak shock pressure lead to the conclusion that impacts at 5 km/sec into fragmental, porous surfaces will produce agglutinate-type glasses; no shock melts are produced at these velocities in dense silicate target rocks. While agglutinitic glasses dominate lunar surface soils, they are virtually absent in gas-rich, brecciated meteorites. This apparent paucity—if not complete lack—of agglutinate-type glasses is also inferred from remote IR-reflectance spectroscopy. The need to identify mechanisms that inhibit agglutinate formation on asteroidal sufaces was recognized previously and was predominantly attributed to lower projectile velocities and different gravitational environments.We will argue in this paper that additional mechanisms may be required. Specifically we propose that spall processes at a target's free surface play a major role in asteroidal surface evolution. At 5 km/sec collision velocity, a target (RT) to projectile (RP radius ratio of RTRP ≈ 100 delineates the boundary between an “infinite half-space” and a “finite”-sized target. In the first case, collisional energy is expended in a pure cratering regime; in the latter, additional displacement of target material in the form of spallation products occurs. The spall volume may exceed the crater volume by an order of magnitude. Therefore fragmental impact deposits on small planetary bodies may be entirely controlled by spall products, rather than crater ejecta. Because tensile failure occurs at <0.2 GPa stress, spall velocities are measured in meters per second (contrary to crater ejecta) and therefore spallation products are efficiently retained even in low gravitational environments. Spall products are also more coarse grained than crater ejecta; they are also highly biased toward petrographically “unshocked” (<0.2 GPa) rocks.Thus asteroidal surface deposits should be more coarse grained and less shocked than lunar ones—consistent with meteorite evidence and remote-sensing observations. Because spall volume exceeds crater ejecta volume, the total growth rate of asteroidal surface deposits is accelerated, leading to relatively short surface residence times of individual meteorite components, another significant difference between lunar and asteroidal surface materials.  相似文献   

12.
Impulsive penetration of a solar wind filament into the magnetosphere is possible when the plasma element has an excess momentum density with respect to the background medium. This first condition is satisfied when the density is larger inside than outside the plasma inhomogeneity. In this paper we discuss the second condition which must be satisfied for such a plasma element to be captured by the magnetosphere: the magnetization vector (M) carried by this plasma must have a positive component along the direction of B0, the magnetic field where the element penetrates through the magnetopause. On the contrary, when M · B0 < 0, the filament is stopped at the surface of the magnetopause. Thus the outcome of the interaction of the filament with the magnetosphere depends upon the orientation of the Interplanetary Magnetic Field. For instance, penetration and capture in the frontside magnetosphere implies that Bsw, the Interplanetary Magnetic Field, has a southward, or a small northward, component. Penetration and capture in the northern lobe of the magnetotail is favoured for an IMF pointing away from the Sun; in the southern lobe Bsw must be directed towards the Sun for capture. Finally, for capture in the vicinity of the polar cusps the magnetospheric field (B0) assumes a wider range of orientations. Therefore, near the neutral points, it is easier to find a place where the condition M · B0 > 0 is satisfied than elsewhere. As a consequence, the penetration and capture of solar wind irregularities in the cleft regions is possible for almost any orientation of the interplanetary magnetic field direction. All observations made to date support these theoretical conclusions.  相似文献   

13.
Whistlers recorded at Eights (L ? 4) and Byrd (f ? 7), Antarctica have been used to study large-scale structure in equatorial plasma density at geocentric distances ?3–6 RE. The observations were made during conditions of magnetic quieting following moderate disturbance. The structures were detected by a “scanning” process involving relative motion, at about one tenth of the Earth's angular velocity or greater, between the observed density features and the observing whistler station or stations. Three case studies are described, from 26 March 1965, 11 May 1965 and 29 August 1966. The cases support satellite results by showing outlying high density regions at ?4–6 RE that are separated from the main plasmasphere by trough-like depressions ranging in width from ?0.2 to 1 RE. The structures evidently endured for periods of 12 hr or more. In the cases of deepest quieting their slow east-west motions with respect to the Earth are probably of dynamo origin. The cases observed during deep quieting (11 May 1965 and 29 August 1966) suggest the approximate rotation with the Earth of structure formed during previous moderate disturbance activity in the dusk sector. The third case, from 26 March 1965, may represent a structure formed near local midnight. The reported structures appear to be closely related to the bulge phenomenon. The present work supports other experimental and theoretical evidence that the dusk sector is one of major importance in the generation of outlying density structure. It is inferred that irregularities of the type reported here regularly develop near 4–5 RE during moderate substorm activity. This research suggests that at least a major class of the density structures that develop near 4 RE are tail-like in nature, joined to the main body of the plasmasphere. The apparent disagreement with Chappell's results from OGO 5, which are interpreted as showing regions of “detached” plasma beyond 5 RE, may be related to the pronounced spatial structure of electric fields observed in high-latitude ionospheric regions that are conjugate to the magnetospheric regions in which the OGO-5 observations were made.  相似文献   

14.
Based on four previous studies with standard-candle quasars and using the correct formula for the luminosity distance, we obtain an improved determination of the deceleration parameter, q0 = +2.07. From the new catalog of quasars, we find the statistical m?(z) - z relation and hence the mean quasar luminosity M?(z) or M?(t) and its rates of change dM?(z)dz and dM?(t)dt. Finally, we discuss the question whether there is a Malmquist effect in our sample and the question of the dichotomy of published q0-values.  相似文献   

15.
A significant sink of geomagnetic pulsation energy is due to Joule dissipation in the ionosphere. To investigate this we have computed the damping experienced by standing Alfvén waves in a dipole magnetic field. Both the uncoupled poloidal and toroidal modes are considered with Joule dissipation being introduced through a boundary condition which relates the electric and magnetic field strengths at the ionosphere, viz: 4πΣ pEc = b, where Σp is the height integrated Pederson conductivity. The damping rates are strongly dependent on the ionospheric conductivity and we find that typically the normalized damping rate, γω, is ~0.1 for nightside values of conductivity and ~0.01 for the dayside. This would account for the observed scale of bandwidths in pulsation signals. Away from regions of extreme damping we find γL?1Σp?1.  相似文献   

16.
Using the time observations obtained by 8 instruments in the Chinese Joint System during the years 1966–1980, we analyse the Moon's zonal tidal effect. The results show that the effects of the Mf and Mm waves are obvious. From this, the parameters KC of the zonal tide are estimated and the weighted averages of the 8 instruments are (KC)Mf = 0.909 ± 0.114 and (KC)Mm = 0.905 ± 0.083 respectively.  相似文献   

17.
A three-dimensional numerical model was developed with the goal of studying limited dynamical problems relevant to the latest stage of planet growth in the accretion theory. A small number of large protoplanets (~ Moon size) of different masses, moving around the Sun, are considered. The dynamical evolution and growth of the population is studied under mutual gravitational perturbations, accretion, and collisional fragmentation processes. Gravitational encounters are treated exactly by numerical integration of the N-body problem. Outcomes of collisional fragmentation are modeled according to the results of R. Greenberg et al. (1978, Icarus, 35, 1–26). In the present work, we consider 25 protoplanets with uniform mass distribution in the range 2 × 1025?4 × 1026 g on heliocentric orbits in the Earth zone. These bodies are initially confined to a small volume of space to permit gravitational perturbations by close approaches and collisions within a finite length of integration time. The dynamical evolution of the swarm is followed for four different sets of initial ranges in semimajor axis, eccentricity, and inclination: Δa=0.01, 0.02, 0.04, 0.08 AU; Δe= 0.005, 0.01, 0.02, 0.04; Δi=0°3, 0°6, 1°2, 2°4. Among other results, it is found that average eccentricities and inclinations evolve toward a steady state such that i ? 12, e; it is also found that, whatever the initial conditions, the population evolves toward a quasi-equilibrium relative velocity distribution corresponding to a Safronov parameter value θ?10. Moreover, the growth process of the growing planet presents very similar behavior in the four cases considered, except for the time scale of evolution, which increases with the initial range of orbital elements. Earlier works of this kind have been presented by L.P. Cox and J.S. Lewis (1980, Icarus, 44, 706–721) and by G.N. Wetherill (1980b, In Geol. Soc. Canad. Spec. Publ., p. 20), although a number of differences exist between the three approaches.  相似文献   

18.
Theoretical results on the daily variation of O+ and H+ field-aligned velocities in the topside ionosphere are presented. The results are for an L = 3 magnetic field tube under sunspot minimum conditions at equinox. They come from calculations of time-dependent O+ and H+ continuity and momentum balance in a magnetic field tube which extends from the lower F2 region to the equatorial plane (Murphy et al., 1976).There are occasions when ion counterstreaming occurs, with the O+ velocity upward and H+ velocity downward. The conditions causing this counterstreaming are described: the H+ layer is descending whilst O+ is supplied from below either to increase the O+ concentration at fixed heights or to replace O+ ions lost by charge exchange with neutral H. It is suggested that the results of observations at Arecibo by Vickrey et al. (1976) of O+ and H+ concentrations and counterstreaming velocities are significantly affected by E×B drift.  相似文献   

19.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

20.
A ring current model has been obtained which permits calculations ofDst variations on the Earth's surface during magnetic storms. The changes in Dst are described by the equation
ddtDsto = F(EM)?Dstotau;
where Dsto = Dst-bp12+~tc; p = mnv2 is solar wind pressure; F(EM) is the function, controlled by the electromagnetic parameters of interplanetary medium, of injection into ring current ; τ is the constant of ring current decay. C = Cuτ?=18 nT, where C is the level of the Dst-variation field measurements; ? is the injection function characterizing the quasisteady-state injection of energy into the ring-current region. The constant Ç is determined from the condition that the change of the ring current energy from magnetic storm commencement to end should equal the difference between the injected and dissipated energy throughout the storm. The values of the factors b and τ were found by the method of minimizing the sum of the quadratic deviations of the calculated Dst from the values observed throughout the storm : b = 0.23 nT/(eV cm?3)12, τ = 8.2 h at Dst? ? 55 nT and τ = 5.8 h at -120 ? Dst ? — 55 nT. The injection function F(EM) is of the form F(EM) = d(Ey? A) at the values of the azimuthal component of the solar wind electric field Ey ? A, and F(EM) =0 at A?Ey.d = ? 1.2 × 10?3 Ts?1 (mV/m)?1 and A = ? 0.9 mV m?1 . Thus, the injection to ring current is possible at the northward Bz component of the IMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号