首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   4篇
  国内免费   3篇
测绘学   1篇
大气科学   9篇
地球物理   56篇
地质学   58篇
海洋学   41篇
天文学   26篇
综合类   1篇
自然地理   14篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   7篇
  2010年   9篇
  2009年   15篇
  2008年   9篇
  2007年   12篇
  2006年   11篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1998年   1篇
  1997年   4篇
  1996年   8篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1972年   2篇
  1971年   2篇
  1965年   1篇
排序方式: 共有206条查询结果,搜索用时 93 毫秒
1.
Multidisciplinary surveys were conducted to investigate gas seepage and gas hydrate accumulation on the northeastern Sakhalin continental slope (NESS), Sea of Okhotsk, during joint Korean–Russian–Japanese expeditions conducted from 2003 to 2007 (CHAOS and SSGH projects). One hundred sixty-one gas seeps were detected in a 2000 km2 area of the NESS (between 53°45′N and 54°45′N). Active gas seeps in a gas hydrate province on the NESS were evident from features in the water column, on the seafloor, and in the subsurface: well-defined hydroacoustic anomalies (gas flares), side-scan sonar structures with high backscatter intensity (seepage structures), bathymetric structures (pockmarks and mounds), gas- and gas-hydrate-related seismic features (bottom-simulating reflectors, gas chimneys, high-amplitude reflectors, and acoustic blanking), high methane concentrations in seawater, and gas hydrates in sediment near the seafloor. These expressions were generally spatially related; a gas flare would be associated with a seepage structure (mound), below which a gas chimney was present. The spatial distribution of gas seeps on the NESS is controlled by four types of geological structures: faults, the shelf break, seafloor canyons, and submarine slides. Gas chimneys that produced enhanced reflection on high-resolution seismic profiles are interpreted as active pathways for upward gas migration to the seafloor. The chimneys and gas flares are good indicators of active seepage.  相似文献   
2.
We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of –61.6‰ V-PDB and –285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C–δD classification for hydrate-bound gas in either freshwater or marine environments.  相似文献   
3.
The varved sediment of Lake Suigetsu (central Japan) provides a valuable opportunity to obtain high‐resolution, multi‐proxy palaeoenvironmental data across the last glacial/interglacial cycle. In order to maximize the potential of this archive, a well‐constrained chronology is required. This paper outlines the multiple geochronological techniques being applied – namely varve counting, radiocarbon dating, tephrochronology (including argon–argon dating) and optically stimulated luminescence (OSL) – and the approaches by which these techniques are being integrated to form a single, coherent, robust chronology. Importantly, we also describe here the linkage of the floating Lake Suigetsu (SG06) varve chronology and the absolute (IntCal09 tree‐ring) time scale, as derived using radiocarbon data from the uppermost (non‐varved) portion of the core. This tie‐point, defined as a distinct (flood) marker horizon in SG06 (event layer B‐07–08 at 1397.4 cm composite depth), is thus derived to be 11 255 to 11 222 IntCal09 cal. years BP (68.2% probability range).  相似文献   
4.
Deep water observations of extreme waves with moored and free GPS buoys   总被引:1,自引:1,他引:0  
Point-positioning GPS-based wave measurements were conducted by deep ocean (over 5,000 m) surface buoys moored in the North West Pacific Ocean in 2009, 2012, and 2013. The observed surface elevation bears statistical characteristics of Gaussian, spectrally narrow ocean waves. The tail of the averaged spectrum follows the frequency to the power of ?4 slope, and the significant wave height and period satisfies the Toba’s 3/2 law. The observations compare well with a numerical wave hindcast. Two large freak waves exceeding 13 m in height were observed in October 2009 and three extreme waves around 20 m in height were observed in October 2012 and in January 2013. These extreme events are associated with passages of a typhoon and a mid-latitude cyclone. Horizontal movement of the buoy revealed that the orbital motion of the waves at the peak of the wave group mostly exceed the weakly nonlinear estimate. For some cases, the orbital velocity exceeded the group velocity, which might indicate a breaking event but is not conclusive yet.  相似文献   
5.
This study reports measurements of the Raman spectra of Lake Baikal gas hydrates and estimations of the hydration number of methane-rich samples. The hydration number of gas hydrates retrieved from the southern Baikal Basin (crystallographic structure I) was approx. 6.1. Consistent with previous results, the Raman spectra of gas hydrates retrieved from the Kukuy K-2 mud volcano in the central Baikal Basin indicated the existence of crystallographic structures I and II. Measurements of the dissociation heat of Lake Baikal gas hydrates by calorimetry (from the decomposition of gas hydrates to gas and water), employing the hydration number, revealed values of 53.7–55.5?kJ?mol–1 for the southern basin samples (structure I), and of 54.3–55.5?kJ?mol–1 for the structure I hydrates and 62.8–64.2?kJ?mol–1 for the structure II hydrates from the Kukuy K-2 mud volcano.  相似文献   
6.
Thermal measurements and hydrate mapping in the vicinity of the K-2 mud volcano in Lake Baikal have revealed a particular type of association of thermal anomalies (29–121?mW?m–2) near hydrate-forming layers. Detailed coring within K-2 showed that hydrates are restricted to two distinct zones at sub-bottom depths exceeding 70–300?cm. Temperature data from stations with hydrate recovery and degassing features all display low thermal gradients. Otherwise, the thermal gradients within the mud volcano are generally increased. These findings imply a more complicated thermal regime than often assumed for mud volcanoes, with important roles for both fluids and hydrates. The coexistence of neighbouring low and high thermal anomalies is interpreted to result from discharging and recharging fluid activity, rather than hydrate thermodynamics. It is suggested that hydrates play a key role in controlling the fluid circulation pattern at an early stage. At a later stage, the inflow of undersaturated lake water would favour the dissolution of structure I hydrates and the formation of structure II hydrates, the latter having been observed on top of structure I hydrates in the K-2 mud volcano.  相似文献   
7.
Buckling‐restrained braces (BRBs) are widely used as ductile seismic‐resistant and energy‐dissipating structural members in seismic regions. Although BRBs are expected to exhibit stable hysteresis under cyclic axial loading, one of the key limit states is global flexural buckling, which can produce an undesirable response. Many prior studies have indicated the possibility of global buckling of a BRB before its core yields owing to connection failure. In this paper, BRB stability concepts are presented, including their bending‐moment transfer capacity at restrainer ends for various connection stiffness values with initial out‐of‐plane drifts, and a unified simple equation set for ensuring BRB stability is proposed. Moreover, a series of cyclic loading tests with initial out‐of‐plane drifts are conducted, and the results are compared with those of the proposed equations. © 2013 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   
8.
The Tibetan Plateau is a key factor in controlling the present‐day climate and atmospheric circulation pattern in Asia. The pattern of atmospheric circulation after the uplift of the plateau is well known, whereas direct evidence is lacking regarding the nature of the circulation pattern prior to the uplift. The distribution of desert directly reflects the position of the subtropical high‐pressure belt, and the prevailing surface‐wind pattern recorded in desert deposits reveals the position of its divergence axis. Cretaceous eolian sandstone of the Phu Thok Formation is extensively exposed in the northern Khorat Basin, northeastern Thailand. We conducted a sedimentological study on this formation to reconstruct temporal changes in the latitude of the subtropical high‐pressure belt in low‐latitude Asia during the Cretaceous. Spatio‐temporal changes in the paleo‐wind directions recorded in the Phu Thok Formation reveal that the Khorat Basin mainly belonged to the northeast trade wind belt and subtropical high‐pressure belt was situated to the north of the Khorat Basin during the initial stages of deposition, shifted southward to immediately above the basin during the main phase of deposition, and then shifted northward again to the north of the basin during the final stages of deposition. The paleomagnetic polarity sequence obtained for the Phu Thok Formation comprises three zones of normal polarity and two of reversed polarity, correlating to chrons M1n to C34n of the geomagnetic polarity time scale. This result suggests that the Phu Thok Formation is mid‐Cretaceous in age (from c. 126 Ma to c. 99–93 Ma), similar to the age of eolian sandstone in the Sichuan Basin, southern China (the Jiaguan Formation). These results, in combination with paleo‐wind direction data, suggest the development of low‐latitude desert and an equatorward shift of the subtropical high‐pressure belt (relative to the present‐day) in Asia during the mid‐Cretaceous.  相似文献   
9.
The signal measured by heave–pitch–roll directional wave buoys yields the first four coefficients of a Fourier series. Data adaptive methods must be employed to estimate a directional wave spectrum. Marine X-band radars (MRs) have the advantage over buoys that they can measure “model-free” two-dimensional (2D) wave spectra. This study presents the first comprehensive validation of MR-derived multi-directional wave characteristics. It is based on wave data from the 2010 Impact of Typhoons on the Ocean in the Pacific (ITOP) experiment in the Philippine Sea, namely MR measurements from R/V Roger Revelle, Extreme Air–Sea Interaction (EASI) buoy measurements, as well as WAVEWATCH-III (WW3) modeling results. Buoy measurements of mean direction and spreading as function of frequency, which do not require data adaptive methods, are used to validate the WW3 wave spectra. An advanced MR wave retrieval technique is introduced that addresses various shortcomings of existing methods. Spectral partitioning techniques, applied to MR and WW3 results, reveal that multimodal seas are frequently present. Both data sets are in excellent agreement, tracking the evolution of up to 4 simultaneous wave systems over extended time periods. This study demonstrates MR’s and WW3’s strength at measuring and predicting 2D wave spectra in swell-dominated seas.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号