首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4431篇
  免费   152篇
  国内免费   10篇
测绘学   171篇
大气科学   596篇
地球物理   1031篇
地质学   1786篇
海洋学   210篇
天文学   585篇
综合类   15篇
自然地理   199篇
  2021年   65篇
  2020年   60篇
  2019年   48篇
  2018年   124篇
  2017年   140篇
  2016年   214篇
  2015年   133篇
  2014年   189篇
  2013年   253篇
  2012年   105篇
  2011年   165篇
  2010年   184篇
  2009年   218篇
  2008年   155篇
  2007年   134篇
  2006年   118篇
  2005年   99篇
  2004年   72篇
  2003年   79篇
  2002年   104篇
  2001年   91篇
  2000年   74篇
  1999年   75篇
  1998年   74篇
  1997年   68篇
  1996年   59篇
  1995年   69篇
  1994年   80篇
  1993年   36篇
  1992年   39篇
  1991年   38篇
  1990年   45篇
  1989年   39篇
  1988年   31篇
  1987年   37篇
  1985年   47篇
  1984年   47篇
  1983年   58篇
  1982年   48篇
  1981年   48篇
  1980年   40篇
  1979年   35篇
  1978年   62篇
  1977年   35篇
  1976年   36篇
  1975年   44篇
  1974年   53篇
  1973年   51篇
  1968年   27篇
  1962年   26篇
排序方式: 共有4593条查询结果,搜索用时 31 毫秒
1.
2.
In Arctic alpine regions, glacio‐lacustrine environments respond sensitively to variations in climate conditions, impacting, for example,glacier extent and rendering former ice‐contact lakes into ice distal lakes and vice versa. Lakefloors may hold morphological records of past glacier extent, but remoteness and long periods of ice cover on such lakes make acquisition of high‐resolution bathymetric datasets challenging. Lake Tarfala and Kebnepakte Glacier, located in the Kebnekaise mountains, northern Sweden, comprise a small, dynamic glacio‐lacustrine system holding a climate archive that is not well studied. Using an autonomous surface vessel, a high‐resolution bathymetric dataset for Lake Tarfala was acquired in 2016, from which previously undiscovered end moraines and a potential grounding line feature were identified. For Kebnepakte Glacier, structure‐from‐motion photogrammetry was used to reconstruct its shape from photographs taken in 1910 and 1945. Combining these methods connects the glacial landform record identified at the lakefloor with the centennial‐scale dynamic behaviour of Kebnepakte Glacier. During its maximum 20th century extent, attained c. 1910, Kebnepakte Glacier reached far into Lake Tarfala, but had retreated onto land by 1945, at an average of 7.9 m year–1. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
3.
4.
Libyan Desert Glass (LDG) is a SiO2-rich natural glass whose origin, formation mechanism, and target material are highly debated. We here report on the finding of a lens-shaped whitish inclusion within LDG. The object is dominantly composed of siliceous glass and separated from the surrounding LDG by numerous cristobalite grains. Within cristobalite, several regions rich in mullite often associated with ilmenite were detected. Mineral assemblage, chemical composition, and grain morphologies suggest that mullite was formed by thermal decomposition of kaolinitic clay at atmospheric pressure and T ≥ 1600 °C and also attested to high cooling rates under nonequilibrium conditions. Cristobalite contains concentric and irregular internal cracks and is intensely twinned, indicating that first crystallized β-cristobalite inverted to α-cristobalite during cooling of the SiO2-rich melt. The accompanied volume reduction of 4% induced the high density of defects. The whitish inclusion also contains several partly molten rutile grains evidencing that at least locally the LDG melt was at T ≥ 1800 °C. Based on these observations, it is concluded that LDG was formed by high-temperature melting of kaolinitic clay-, rutile-, and ilmenite-bearing Cenozoic sandstone or sand very likely during an asteroid or comet impact onto Earth. While melting and ejection occurred at high pressures, the melt solidified quickly at atmospheric pressure.  相似文献   
5.

Satellite altimetry has been widely used to determine surface elevation changes in polar ice sheets. The original height measurements are irregularly distributed in space and time. Gridded surface elevation changes are commonly derived by repeat altimetry analysis (RAA) and subsequent spatial interpolation of height change estimates. This article assesses how methodological choices related to those two steps affect the accuracy of surface elevation changes, and how well this accuracy is represented by formal uncertainties. In a simulation environment resembling CryoSat-2 measurements acquired over a region in northeast Greenland between December 2010 and January 2014, different local topography modeling approaches and different cell sizes for RAA, and four interpolation approaches are tested. Among the simulated cases, the choice of either favorable or unfavorable RAA affects the accuracy of results by about a factor of 6, and the different accuracy levels are propagated into the results of interpolation. For RAA, correcting local topography by an external digital elevation model (DEM) is best, if a very precise DEM is available, which is not always the case. Yet the best DEM-independent local topography correction (nine-parameter model within a 3,000 m diameter cell) is comparable to the use of a perfect DEM, which exactly represents the ice sheet topography, on the same cell size. Interpolation by heterogeneous measurement-error-filtered kriging is significantly more accurate (on the order of 50% error reduction) than interpolation methods, which do not account for heterogeneous errors.

  相似文献   
6.
Hydrological models are useful tools to analyze present and future conditions of water quantity and quality. The integrated modelling of water and nutrients needs an adequate representation of the different discharge components. In common with many lowlands, groundwater contribution to the discharge in the North German lowlands is a key factor for a reasonable representation of the water balance, especially in low flow periods. Several studies revealed that the widely used Soil and Water Assessment Tool (SWAT) model performs poorly for low flow periods. This paper deals with the extension of the groundwater module of the SWAT model to enhance low flow representation. The current two‐storage concept of SWAT was further developed to a three‐storage concept. This was realized due to modification of the groundwater module by splitting the active groundwater storage into a fast and a slow contributing aquifer. The results of this study show that the groundwater module with three storages leads to a good prediction of the overall discharge especially for the recession limbs and the low flow periods. The improved performance is reflected in the signature measures for the mid‐segment (percent bias ?2.4% vs ?15.9%) and the low segment (percent bias 14.8% vs 46.8%) of the flow duration curve. The three‐storage groundwater module is more process oriented than the original version due to the introduction of a fast and a slow groundwater flow component. The three‐storage version includes a modular approach, because groundwater storages can be activated or deactivated independently for subbasin and hydrological response unit level. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
Event sediment transport and yield were studied for 45 events in the upstream part of the 260 km2 agricultural Koga catchment that drains to an irrigation reservoir. Discharge and turbidity data were collected over a period of more than a year, accompanied by grab sampling. Turbidity was very well correlated with the sediment concentrations from the samples (r = 0.99), which allowed us to estimate the temporal patterns of sediment concentrations within events. The hysteresis patterns between discharge and sediment concentrations were analysed to provide insight into the different sediment sources. Anticlockwise patterns are the dominant hysteresis patterns in the area, suggesting smaller contributions of suspended sediment from the river channels than from the hillslopes and agricultural areas. Complicated types of hysteresis patterns were mostly observed for long events with multiple peaks. For a given discharge, sediment yields in August and September, when the catchment was almost completely covered with vegetation, were much smaller than during the rest of the rainy season. The hysteresis patterns and timing suggest that the sediment availability from the agricultural areas and hillslopes affects sediment yields more strongly than does peak discharge. Two distinct types of sediment rating curves were observed for the season when the agricultural land was covered with vegetation and when it was not, indicating the dominating contribution of land use/cover to sediment yields in the catchment. The rate of suspended sediment transport in the area was estimated as 25.6 t year?1 ha?1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
9.
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
This paper describes an alternative approach for generating pointing models for telescopes equipped with serial kinematics, esp. equatorial or alt-az mounts. Our model construction does not exploit any assumption for the underlying physical constraints of the mount, however, one can assign various effects to the respective components of the equations. In order to recover the pointing model parameters, classical linear least squares fitting procedures can be applied. This parameterization also lacks any kind of parametric singularity. We demonstrate the efficiency of this type of model on real measurements with meter-class telescopes where the results provide a root mean square accuracy of 1.5?2 arcseconds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号