首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FRESIP (FRequency of Earth-Sized Inner Planets) is a mission designed to detect and characterize Earth-sizes planets around solar-like stars. The sizes of the planets are determined from the decrease in light from a star that occurs during planetary transits, while the orbital period is determined from the repeatability of the transits. Measurements of these parameters can be compared to theories that predict the spacing of planets, their distribution of size with orbital distance, and the variation of these quantities with stellar type and multiplicity. Because thousands of stars must be continually monitored to detect the transits, much information on the stars can be obtained on their rotation rates and activity cycles. Observations of p-mode oscillations also provide information on their age and composition. These goals are accomplished by continuously and simultaneously monitoring 500 solar-like stars for evidence of brightness changes caused by Earth-sized or larger planetary transits. To obtain the high precision needed to find planets as small as the Earth and Venus around solar-like stars, a wide field of view Schmidt telescope with an array of CCD detectors at its focal plane must be located outside of the Earth's at mosphere. SMM (Solar Maximum Mission) observations of the low-level variability of the Sun (1:100,000) on the time scales of a transit (4 to 16 hours), and our laboratory measurements of the photometric precision of charge-coupled devices (1:100,000) show that the detection of planets as small as the Earth is practical. The probability for detecting transits is quite favorable for planets in inner orbits. If other planetary systems are similar to our own, then approximately 1% of those systems will show transits resulting in the discovery of 50 planetary systems in or near the habitable zone of solar-like stars.  相似文献   

2.
During the last decade there was a change in paradigm, which led to consider that terrestrial-type planets within liquid-water habitable zones (LW-HZ) around M stars can also be suitable places for the emergence and evolution of life. Since many dMe stars emit large amount of UV radiation during flares, in this work we analyze the UV constrains for living systems on Earth-like planets around dM stars. We apply our model of UV habitable zone (UV-HZ; Buccino, A.P., Lemarchand, G.A., Mauas, P.J.D., 2006. Icarus 183, 491–503) to the three planetary systems around dM stars (HIP 74995, HIP 109388 and HIP 113020) observed by IUE and to two M-flare stars (AD Leo and EV Lac). In particular, HIP 74995 hosts a terrestrial planet in the LW-HZ, which is the exoplanet that most resembles our own Earth. We show, in general, that during the quiescent state there would not be enough UV radiation within the LW-HZ to trigger the biogenic processes and that this energy could be provided by flares of moderate intensity, while strong flares do not necessarily rule-out the possibility of life-bearing planets.  相似文献   

3.
Adrián Brunini 《Icarus》2005,177(1):264-268
The sample of known exoplanets is strongly biased to masses larger than the ones of the giant gaseous planets of the Solar System. Recently, the discovery of two extrasolar planets of considerably lower masses around the nearby Stars GJ 436 and ρ Cancri was reported. They are like our outermost icy giants, Uranus and Neptune, but in contrast, these new planets are orbiting at only some hundredth of the Earth-Sun distance from their host stars, raising several new questions about their origin and constitution. Here we report numerical simulations of planetary accretion that show, for the first time through N-body integrations that the formation of compact systems of Neptune-like planets close to the hosts stars could be a common by-product of planetary formation. We found a regime of planetary accretion, in which orbital migration accumulates protoplanets in a narrow region around the inner edge of the nebula, where they collide each other giving rise to Neptune-like planets. Our results suggest that, if a protoplanetary solar environment is common in the Galaxy, the discovery of a vast population of this sort of ‘hot cores’ should be expected in the near future.  相似文献   

4.
日冕是太阳大气活动的关键区域,是日地空间天气的源头.受观测限制,对日冕低层大气等离子体结构和磁场状态的研究非常欠缺,国际上对于可见光波段日冕低层大气的亮度分层研究很少.利用丽江日冕仪YOGIS(Yunnan Green-line Imaging System)的日冕绿线(FeⅩⅣ5303?)观测资料,对内日冕区域(1.03R-1.25R,R表示太阳半径)亮结构及其中冕环进行了有效的强度衰减分析.对亮结构的强度在太阳径向高度上进行了指数衰减拟合,比较这些拟合结果发现所得到的静态内冕环的衰减指数在一固定值附近.然后将比较明显的冕环提取出来,通过对不同高度的绿线强度进行指数拟合,得出的衰减指数与亮结构中也比较相近,这对进一步研究日冕中的各项物理参数演化提供了参考.  相似文献   

5.
Su-Shu Huang 《Icarus》1973,18(3):339-376
The article deals with the occurrence of planetary systems in the Universe. In Section I, the terms “planet” and “planet-like objects” are defined. Two definitions proposed for the term “planetary system” are examined from the point of view (1) of the relation between planetary systems and binary and multiple star systems and (2) of planetary systems as abodes of intelligent beings. In Section II, the observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds.In Section III we show that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. Both observational evidence and theoretical reasons indicate the ease of formation of such disk structures in the cosmos. The time scale of collapse of a gaseous medium into a disk and that of the latter's dissipation are examined. This provides us with a new empirical approach and leads us to consider the problem of the frequency of occurrence of planetary systems to be ripe for scientific study. In Section IV, a brief review of theories of the formation of the solar system is given along with a proposed scheme for classification of these theories. In Section V, the evidence for magnetic activity in the early stages of stellar evolution is presented, as developed from six independent clues: the nuclear abundance of light elements, the behavior of flare stars, the intensities of H and K emission in stars, the nonthermal radiation of premain sequence stars, the properties of meteorites, and finally the existence of contact binaries. The magnetic braking theories of solar and stellar rotation are discussed in Section VI, thereby introducing the idea of formation of a rotating disk of gas and dust around stars in Section VII. From this disk a planetary system emerges.Section VIII gives an estimate for the frequency of occurrence of planetary systems in the Universe. It is based on the rotational behavior of main-sequence stars, and concludes that planetary systems have a far greater chance to appear around single main-sequence stars of spectral types later than F5 than around any other kind of star. The combined probability distribution of sizes and masses could be obtained. From physical considerations, it appears that sizes of planetary systems around stars of any given spectral type may not vary greatly from one to another.  相似文献   

6.
The precise measurement of variations in stellar radial velocities provides one of several promising methods of surveying a large sample of nearby solar type stars to detect planetary systems in orbit around them. The McDonald Observatory Planetary Search (MOPS) was started in 1987 September with the goal of detecting other nearby planetary systems. A stabilized I2 gas absorption cell placed in front of the entrance slit to the McDonald Observatory 2.7 m telescope coudé spectrograph serves as the velocity metric. With this I2 cell we can achieve radial velocity measurement precision better than 10 m s–1 in an individual measurement. At this level we can detect a Jupiter-like planet around a solar-type star, and have some hope of detecting Saturn-like planets in a long-term survey. The detectability of planets is ultimately limited by stellar pulsation modes and photospheric motions. Monthly MOPS observing runs allow us to obtain at least 5 independent observations per year of the 33 solar-type (F5-K7) stars on our observing list. We present representative results from the first five years of the survey.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

7.
The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term “Earth-like” is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?  相似文献   

8.
We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object.  相似文献   

9.
Debris disks are optically thin, almost gas-free dusty disks observed arounda significant fraction of main-sequence stars older than about 10 Myr. Since the circumstellar dust is short-lived, the very existence of these disks is considered as evi-dence that dust-producing planetesimals are still present in mature systems, in whichplanets have formed – or failed to form – a long time ago. It is inferred that theseplanetesimals orbit their host stars at asteroid to Kuiper-belt distances and continuallysupply ...  相似文献   

10.
Planets result from a series of processes within a circumstellar disk. Evidence comes from the near planar orbits in the Solar System and other planetary systems, observations of newly formed disks around young stars, and debris disks around main-sequence stars. As planet-hunting techniques improve, we approach the ability to detect systems like the Solar System, and place ourselves in context with planetary systems in general. Along the way, new classes of planets with unexpected characteristics are discovered. One of the most recent classes contains super Earth-mass planets orbiting a few AU from low-mass stars. In this contribution, we outline a semi-analytic model for planet formation during the pre-main sequence contraction phase of a low-mass star. As the star contracts, the “snow line”, which separates regions of rocky planet formation from regions of icy planet formation, moves inward. This process enables rapid formation of icy protoplanets that collide and merge into super-Earths before the star reaches the main sequence. The masses and orbits of these super-Earths are consistent with super-Earths detected in recent microlensing experiments.  相似文献   

11.
The photometric method detects planets orbiting other stars by searching for the reduction in the light flux or the change in the color of the stellar flux that occurs when a planet transits a star. A transit by Jupiter or Saturn would reduce the stellar flux by approximately 1% while a transit by Uranus or Neptune would reduce the stellar flux by 0.1%. A highly characteristic color change with an amplitude approximately 0.1 of that for the flux reduction would also accompany the transit and could be used to verify that the source of the flux reduction was a planetary transit rather than some other phenomenon. Although the precision required to detect major planets is already available with state-of-the-art photometers, the detection of terrestrial-sized planets would require a precision substantially greater than the state-of-the-art and a spaceborne platform to avoid the effects of variations in sky transparency and scintillation. Because the probability is so small of observing a planetary transit during a single observation of a randomly chosen star, the search program must be designed to continuously monitor hundreds or thousands of stars. The most promising approach is to search for large planets with a photometric system that has a single-measurement precision of 0.1%. If it is assumed that large planets will have long-period orbits, and that each star has an average of one large planet, then approximately 104 stars must be monitored continuously. To monitor such a large groups of stars simultaneously while maintaining the required photometric precision, a detector array coupled by a fiber-optic bundle to the focal plane of a moderate aperture (≈ 1 m), wide field of view (≈50°) telescope is required. Based on the stated assumptions, a detection rate of one planet per year of observation appears possible.  相似文献   

12.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

13.
Cosmogonical theories as well as recent observations allow us to expect the existence of planets around many stars other than the Sun. On an other hand, double and multiple star systems are established to be more numerous than single stars (such as the Sun), at least in the solar neighborhood. We are then faced to the following dynamical problem: assuming that planets can form in a binary early environment (I do not deal here with), does long-term stability for planetary orbits exist in double star systems.Although preliminary studies were rather pessimistic about the possibility of existence of stable planetary orbits in double or multiple star systems, modern computation have shown that many such stable orbits do exist (but possible chaotic behavior), either around the binary as a whole (P-type) or around one component of the binary (S-type), this latter being explored here.The dynamical model is the elliptic plane restricted three-body problem; the phase space of initial conditions is systematically explored, and limits for stability have been established. Stable S-type planetary orbits are found up to distance of their "sun" of the order of half the periastron distance of the binary; moreover, among these stable orbits, nearly-circular ones exist up to distance of their "sun" of the order of one quarter the periastron distance of the binary; finally, among the nearly-circular stable orbits, several stay inside the "habitable zone", at least for two nearby binaries which components are nearly of solar type.Nevertheless, we know that chaos may destroy this stability after a long time (sometimes several millions years). It is therefore important to compute indicators of chaos for these stable planetary orbits to investigate their actual very long-term stability. Here we give an example of such a computation for more than a billion years.  相似文献   

14.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

15.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

16.
A rich population of low‐mass planets orbiting solar‐type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super‐Earths and Neptune‐type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low‐mass planets have been detected by the HARPS spectrograph around 30 % of solar‐type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The searches for extrasolar planetary systems by different methods based on the photometric monitoring of stars are reviewed. The search for extra-solar planets is, more or less consciously, the first step toward the search for other Minds in the Universe. A rational approach leads to the search for planets where structures with high complexity can emerge. In absence of any positive indication, it is safer to start this search by looking for planets within the habitable zone around main sequence stars where liquid water can be present. Of course, even if this future goal would fail, the detection of terrestrial planets would contribute to the characterization of other planetary systems and would constitute an interesting astrophysical goal by itself.  相似文献   

18.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

19.
Neptune dominates the dynamics of the Kuiper Belt. By examining images of debris disks around other stars, we may be able to infer what kinds of planets shape the outer edges of other planetary systems. The last few years have seen a burst of progress in the modeling of azimuthal structures in debris disks created by planetary perturbers; new models incorporate planets on substantially eccentric orbits. I review this recent progress in debris disk dynamics and discuss the Kuiper Belt as a key example.  相似文献   

20.
Measurement of variations in the radial velocities of stars due to the reflex orbital motion of the star around the planetary-system barycenter constitutes a powerful method of searching for substellar or planetary mass companions. After several years of patient data acquisition, radial-velocity searches for planetary systems around other stars are now beginning to bear fruit. In late 1995 and early 1996, three candidate systems were announced with Jovian-mass planets around solar-type stars. The current paradigm for low-mass star formation suggests that planetary systems should be able to form in the circumstellar disks surrounding young stellar objects. These newly discovered systems, and other discoveries which will soon follow them, will test critically our understanding of the processes of star- and planet-formation. We review the techniques used in these radial-velocity searches and their results to date. We then discuss planned improvements in the surveys, and the prospects for the next 20 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号