首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synoptic ship and satellite observations were performed of the Kuroshio warm-core ring (KWCR) 93A and its adjacent waters, off Sanriku, northwestern North Pacific, between early April and late June 1997. The temporal and spatial distribution of chlorophylla (Chl-a) and sea surface temperature in the study area were analyzed using data from ADEOS Ocean Color and Temperature Scanner (OCTS) and NOAA Advanced Very High Resolution Radiometer (AVHRR). The objective of this study was to describe the temporal and spatial variability of the spring bloom and understand its relationship with the changes in the hydrographic structure of these waters in and around KWCR 93A. The maximum value of Chl-a concentration in the ring was less than 1 mg/m3 during April. The spring bloom in the ring occurred early in May and the relatively high maximum (>1.0 mg/m3) continued from early in May to mid-June. In late June, a ship-observed surface Chl-a concentration of less than 0.4 mg/m3 suggests that the spring bloom had already declined in and around KWCR 93A. Double spiral structures of warm and cold streamers appeared from late April to mid-May, which may have an influence on the occurrence of the spring bloom in and around the ring. In this episodic event, the warm streamer can maintain the available potential energy of the ring and the strength of upwelling around the ring. The cold streamer provided water with a high Chl-a concentration to the surface layer of the ring. In order to understand the temporal and spatial variability of Chl-a distribution in the ring, the behavior of the warm and cold streamers needs to be taken into consideration.  相似文献   

2.
Both historic and currently operational chlorophyll algorithms of the satellite-borne ocean color sensors, such as SeaWiFS, were evaluated for in situ spectral radiation and chlorophyll data in some Case I waters, including the waters in the Indian Ocean sector of the Southern Ocean. Chlorophyll a concentration of the data set (n = 73) ranged from 0.04 to 1.01 mg m–3. The algorithms had higher accuracy for the low- and mid-latitude waters (RMSE: 0.163–0.253), specifically the most recently developed algorithms of OCTS and Sea WiFS showed 0.163 and 0.170 of Root Mean Square Errors, respectively. However, these algorithms had large errors (0.422–0.621) for the Southern Ocean data set and underestimated the surface chlorophyll by more than a factor of 2.6. The absorption coefficients in the blue spectral region retrieved from remote sensing reflectance varied in a nonlinear manner with chlorophyll a concentration, and the value in the Southern Ocean was significantly lower than that in the low- and mid-latitude waters for each chlorophyll a concentration. The underestimation of chlorophyll a concentration in the Southern Ocean with these algorithms was caused by the lower specific absorption coefficient in the region compared with the low- and mid-latitude waters under the same chlorophyll a concentration.  相似文献   

3.
Dimethylsulfide (DMS), chlorophyll a (Chl-a), accessory pigments (fucoxanthin, peridinin and 19-hexanoyloxyfucoxanthin), and bacterial production (BP) were measured in the surface layer (0–100 m) of the subarctic North Pacific, including the Bering Sea, during summer (14 July–5 September, 1997). In surface sewater, the concentrations of DMS and Chl-a varied widely from 1.3 to 13.2 nM (5.1 ± 3.0 nM, mean ± S.D., n = 48) and from 0.1 to 2.4 µg L–1 (0.6 ± 0.6 µg L–1, n = 24), respectively. In the subarctic North Pacific, DMS to Chl-a ratios (DMS/Chl-a) were higher on the eastern side than the western side (p < 0.0001). Below the euphotic zone, DMS/Chl-a ratios were law and the correlation between DMS and Chl-a was relatively strong (r 2 = 0.700, n = 27, p < 0.0001). In the euphotic zone, DMS/Chl-a ratios were higher and the correlation between DMS and Chl-a was weak (r 2 = 0.128, n = 50, p = 0.01). The wide variation in DMS/Chl-a ratios would be at least partially explained by the geographic variation in the taxonomic composition of phytoplankton, because of the negative correlation between DMS/Chl-a and fucoxanthin-to-Chl-a ratios (Fuc/Chl-a) (r 2 = 0.476, n = 26, p = 0.0001). Furthermore, there was a positive correlation between DMS and BP (r 2 = 0.380, n = 19, p = 0.005). This suggests that BP did not represent DMS and dimethylsulfoniopropionate (DMSP) removal by bacterial consumption but rather DMSP degradation to DMS by bacterial enzyme.  相似文献   

4.
Data presented in this paper are part of an extensive investigation of the physics of cross-shelf water mass exchange in the north-east of New Zealand and its effect on biological processes. Levels of dissolved dimethylsulfide (DMS) were quantified in relation to physical processes and phytoplankton biomass. Measurements were made at three main sites over the north-east continental shelf of New Zealand's North Island during a current-driven upwelling event in late spring 1996 (October) and an oceanic surface water intrusion event in summer 1997 (January). DMS concentrations in the euphotic zone ranged between 0.4 and 12.9 nmol dm−3. Integrated water column DMS concentrations ranged from 33 to 173 μmol m−2 in late spring during the higher biomass (15–62 Chl-a mg m−2) month of October, and from 25 to 38 μmol m−2 in summer during the generally lower biomass (16–42 Chl-a mg m−2) month of January. We observed high levels of DMS in the surface waters at an Inner Shelf site in association with a Noctiluca scintillans bloom which is likely to have enhanced lysis of DMSP-producing algal cells during phagotrophy. Integrated DMS concentrations increased three-fold at a Mid Shelf site over a period of a week in conjunction with a doubling of algal biomass. A high correlation (r2=0.911, significant <0.001) of integrated DMS and chlorophyll-a concentrations for compiled data from all stations indicated that chlorophyll-a biomass may be a reasonable predictor of DMS in this region, even under highly variable hydrographic conditions. Integrated bacterial production was inversely correlated to DMS production, indicating active bacterial consumption of DMS and/or its precursor.  相似文献   

5.
The Wadden Sea, a shallow coastal area bordering the North Sea, is optically a complex area due to its shallowness, high turbidity and fast changes in concentrations of optically active substances. This study gathers information from the area on concentrations of suspended particulate matter (SPM), Chlorophyll-a (Chl-a), and Coloured Dissolved Organic Matter (CDOM), on total absorption and beam attenuation, and on reflectances from the whole area. It examines the processes responsible for variations in these. Sampling took place at 156 stations in 2006 and 2007. At 37 locations also the specific inherent optical properties (SIOPs) were determined. Results showed large concentration ranges of 2–450 (g m-3) for SPM, 2–67 (mg m-3) for Chl-a, and 0–2.5 m−1 for CDOM(440) absorption. Tides had a large influence on the SPM concentration, while Chl-a had a mainly seasonal pattern. Resuspension lead to a correlation between SPM and Chl-a. The absorption of CDOM had a spatial variability with extremely high values in the Dollard, although the slope of CDOM absorption spectra was comparable with that of the North Sea. The Chl-a specific pigment absorption proved to be influenced by phytoplankton species and specific absorption of non-algal particles at 440 nm was correlated with the mud content of the soil at the sample locations. SPM specific absorption was not found to correlate with any measured factor. As the concentrations of optically active substances changed, we also found spatial and temporal variability in the absorption, beam attenuation and reflectances. Reflectance spectra categorized in groups with decreasing station water depths and with extreme CDOM and SPM concentrations showed distinguishable shapes.  相似文献   

6.
Episodic outflow of suspended sediments from the Kii Channel to the Pacific Ocean in winter was observed by the sediment traps experiment above the shelf slope. When the current speed was weak and its direction was south or southwestward above the shelf slope the sinking sediment flux was nearly zero but the sinking sediment flux increased to 22g m–2 day–1 after the current speed was strong, its direction changed to south-west or westward and water temperature fell. Such intermitten sinking sediment flux above the shelf slope is considered to be related to the intermittent intrusion of the turbid and cold shelf water into the sub-surface layer of the transparent and warm slope water. Such episodic events may play a very important role in the material transport from the coastal sea to the open ocean.  相似文献   

7.
We present calibration and validation results of the OCTS’s ocean color version-3 product, which mainly consists of the chlorophyll-a concentration (Chl-a) and the normalized water-leaving radiance (nLw). First, OCTS was calibrated for the inter-detector sensitivity difference, offset, and absolute sensitivity using external calibration source. It was also vicariously calibrated using in-situ measurements for water (Chl-a andnLw) and atmosphere (optical thickness), which were acquired synchronously with OCTS under cloud-free conditions. Second, the product was validated using selected 17 in-situ Chl-a and 11 in-situnLw measurements. We confirmed that Chl-a was estimated with an accuracy of 68% for Chl-a less than 2 mg/m3, andnLw from 94% (band 2) to 128% (band 4). Geometric accuracy was improved to 1.3 km. Stripes were significantly reduced by modifying the detector normalization factor as a function of input radiance.  相似文献   

8.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

9.
This study focused on the causes of the variation in microphytobenthic biomass and the effects of this variation on macrobenthic animals in the western Seto Inland Sea, Japan, where the importance of microphytobenthos as the primary food source for benthic animals has been recently reported. We investigated the microphytobenthic biomass together with light attenuation of seawater, phytoplanktonic biomass, macrobenthic density and biomass at eight stations (water depth = 5–15 m) during four cruises in 1999–2000. The increased light attenuation coefficient of the water column associated with increased concentration of the phytoplanktonic Chl-a caused a decrease in light flux that reached the seafloor. The biomass of the microphytobenthos within the upper 1 cm of the sediment, 1.9–46.5 mg Chl-a m−2, was inversely correlated with the phytoplanktonic biomass in the overlying water column, 10.9–65.0 mg Chl-a m−2. Thus, interception of light by phytoplankton is considered to be a main cause of the variation in the microphytobenthic biomass. The microphytobenthos biomass showed a significant positive correlation with the macrobenthic density (78–9369 ind. m−2) and biomass (0.4–78.8 gWW m−2). It appears that the increase in oxygen production by the microphytobenthos allowed macrobenthic animals to become more abundant, as a consequence of oxygenation of the organically enriched muddy sediments (14.5 ± 2.69 mg TOC g−1). This study suggests that the variation in the microphytobenthic biomass is influenced by the phytoplanktonic biomass due to shading effect, and the balance between these two functional groups might affect the variability in the macrobenthic density and biomass.  相似文献   

10.
The aim of this study was to identify the factors responsible for the differences in chlorophyll a concentration (Chl-a) observed between the California, Canary, Humboldt and Benguela upwelling areas. Monthly climatologic values of Chl-a obtained from satellite images, covering the years 1998–2004, revealed that this pigment was higher in the Benguela system than in the other areas. Upwelling intensity, as derived from offshore Ekman transport computations, was higher in the Benguela and Humboldt regions and, for the same upwelling intensity, Chl-a was higher in Benguela than in the other regions. Upwelling intensity appears to be able to drive Chl-a densities through nutrient supply, as nutrients are correlated to offshore Ekman transport. A linear regression model including the fraction of sea surface over the shelf in each 1° × 1° box, nitrate, silicate, turbulence and variability of offshore Ekman transport explained the 84.8% of the variance in Chl-a among the areas. Differences in offshore Ekman transport explained the lower Chl-a observed in Canary and California and the higher Chl-a observed in Benguela and Peru-Humboldt. A narrow continental shelf and low water column stability also contribute to reducing phytoplankton pigment biomass in the Canary and California areas. The higher Chl-a values observed in Benguela compared to Humboldt-Peru are due to a wider extension of the continental shelf in the Benguela region.  相似文献   

11.
The variability of Chlorophyll-a (Chl-a) distribution derived from MODIS (on Aqua and Terra platforms) and MERIS sensors have been compared with SeaWiFS data in the Arabian Sea. MODIS Aqua has overestimated the SeaWiFS Chl-a within 25–32% in the coastal turbid (eutrophic) waters and underestimated in open ocean waters with error within 20%. However, there is no significant bias (?0.1 on log-scale) observed as the slope is well within 0.97-1.1 (log transformed). MODIS-Terra has underestimated the Chl-a concentration in open ocean waters by about 29–31%, which is higher than MODIS-Aqua. MODIS-Terra is observed to be more accurate than MODIS-Aqua in the coastal waters. MERIS is overestimating the SeaWiFS Chl-a with log RMS error of ~0.15 and log bias of ~0.13–0.2. The differences in the Chl-a estimates between each sensor are possibly due to differences in the sensor design, bio-optical algorithms and also due to the time differences between the satellites over passes. We have examined that the MERIS is performing similar to SeaWiFS and the MODIS-Aqua (Terra) data are reliable in open ocean (coastal) waters. However, Chl-a retrieval algorithms need to be improved especially for coastal turbid waters to continue with SeaWiFS data for long-term studies.  相似文献   

12.
The first oceanographic research (hydrography, nutrient salts, chlorophyll, primary production and phytoplankton assemblages) in a Middle Galician Ria was carried out in Corme-Laxe during 2001, just a year before the Prestige oil spill, being the only reference to evaluate eventual changes in the phytoplankton community. Due to the small size of this ria (6.5 km2), oceanographic processes were driven by the continental water supplied by Anllons River during the wet season (20–30 m3 s−1 in winter), and the strong oceanic influence from the nearby shelf during the dry season. The annual cycle showed a spring bloom with high levels of chlorophyll (up to 14 μg Chl-a L−1) and primary production (3 g C m−2 d−1) and a summer upwelling bloom (up to 8 μg Chl-a L−1 and 10 g C m−2 d−1) where the proximity of the Galician upwelling core (<13.5 °C at sea surface) favors the input of upwelled seawater (up to 9 μM of nitrate and silicate) to the bottom ria layer, even during summer stratification events (primary production around 2 g C m−2 d−1). Thus, phytoplankton assemblages form a “continuum” from spring to autumn with a predominance of diatoms and overlapping species between consecutive periods; only in autumn dinoflagellates and flagellates characterized the phytoplankton community. In the Middle Rias as Corme-Laxe, the nutrient values, Chl-a, primary production and phytoplankton abundance for productive periods were higher than those reported for the Northern (Ria of A Coruña) and Southern Rias (Ria of Arousa) for year 2001; this suggests the importance of the hydrographic events occurring in the zone of maximum upwelling intensity of the Western Iberian Shelf, where a lack of annual cycles studies exists.  相似文献   

13.
Surface solar radiation over the Pacific Ocean off the Sanriku coast has been estimated using Visible and Infrared Spin Scan Radiometer data supplied by the Geostationary Meteorological Satellite 5 for September, 1996 to June, 1997, when the Ocean Color and Temperature Scanner was functioning. The hourly and daily insolation is estimated with a spatial resolution of 0.01-degree grid. Thein situ surface short wave radiation obtained by the research vessel,Kofu-Maru belonging to the Japan Meteorological Agency is used for validation of the estimated insolation. It is shown that the estimated hourly and daily insolation has an rms (root mean square) error of 17.05% and 8.13%, respectively, which are the ratios between the rms error (W/m2) and the mean insolation (W/m2).  相似文献   

14.
Radiolabelled experiments were carried out to measure necessary parameters in the development of a biodynamic ecotoxicological simulation model of Cd accumulation in the barnacle biomonitor Balanus amphitrite. The Cd uptake rate constant from the dissolved phase, the Cd assimilation efficiency (AE) from suspended particulate matter (SPM) and the efflux rate constant were obtained using 109Cd. A Cd uptake rate constant from the dissolved phase (ku) of 0.0072 L g−1 h−1 was determined for the barnacle under environmentally realistic dissolved Cd concentrations (maximum of 400 ng L−1). Cd AE from SPM was determined from the barnacle feeding on SPM with low and high chl a concentrations, resulting in AEs of 39.0% and 48.7%, respectively, and an efflux rate of 0.0072 d−1. The difference between the AEs resulted from differences in chl a:SPM ratios suggesting a general tendency of higher AE when SPM is enriched with chl a. These results reinforce that the accuracy of ecotoxicological models for metal accumulation in organisms depends on how representative the selected food items are of the organism’s natural diet.  相似文献   

15.
As part of the 2002 Western Arctic Shelf–Basin Interactions (SBI) project, spatio-temporal variability of dissolved inorganic carbon (DIC) was employed to determine rates of net community production (NCP) for the Chukchi and western Beaufort Sea shelf and slope, and Canada Basin of the Arctic Ocean. Seasonal and spatial distributions of DIC were characterized for all water masses (e.g., mixed layer, halocline waters, Atlantic layer, and deep Arctic Ocean) of the Chukchi Sea region during field investigations in spring (5 May–15 June 2002) and summer (15 July–25 August 2002). Between these periods, high rates of phytoplankton production resulted in large drawdown of inorganic nutrients and DIC in the Polar Mixed Layer (PML) and in the shallow depths of the Upper Halocline Layer (UHL). The highest rates of NCP (1000–2850 mg C m−2 d−1) occurred on the shelf in the Barrow Canyon region of the Chukchi Sea and east of Barrow in the western Beaufort Sea. A total NCP rate of 8.9–17.8×1012 g for the growing season was estimated for the eastern Chukchi Sea shelf and slope region. Very low inorganic nutrient concentrations and low rates of NCP (<15–25 mg C m−2 d−1) estimated for the mixed layer of the adjacent Arctic Ocean basin indicate that this area is perennially oligotrophic.  相似文献   

16.
The distribution of chlorophyll a(Chl a) and its relationships with physical and chemical parameters in different regions of the Bering Sea were discussed in July 2010. The results showed the seawater column Chl a concentrations were 13.41–553.89 mg/m2 and the average value was 118.15 mg/m2 in the study areas. The horizontal distribution of Chl a varied remarkably from basin to shelf in the Bering Sea. The regional order of Chl a concentrations from low to high was basin, slope, outer shelf, inner shelf, and middle shelf. The vertical distribution of Chl a was grouped mainly from single-peak type in basin, slope, outer shelf, and middle shelf, where the deep Chl a maxima(DCM) layer was observed at 25–50 m, 30–35 m, 36–44 m, and 37–47 m, respectively. The vertical distribution of Chl a mainly had three basic patterns: standard single-peak type, surface maximum type, and bottom maximum type in the inner shelf. The analysis also showed that the transportation of ocean currents may control the distribution of Chl a, and the effects were not simple in the basin of the Bering Sea. There was a positive correlation between Chl a and temperature, but no significant correlation between Chl a and nutrients. The Bering Sea slope was an area deeply influenced by slope current. Silicate was the factor that controlled the distribution of Chl a within parts of the water in the slope. Light intensity was an important environmental factor in controlling seawater column Chl a in the shelf, where Chl a was limited by nitrate rather than phosphate within the upper water. Meanwhile, there was a positive relationship between Chl a and salinity. Algal blooms broke out at Sta. B6 of the southwestern St. Lawrence Island and Stas F6 and F11 in the middle of the Bering Strait.  相似文献   

17.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

18.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

19.
A sequence of nine dilution experiments was conducted according to Landry and Hassett [Landry, M.R., Hassett, R.P., 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67, 283–288] in the northern Wadden Sea from March until October 2004 to investigate the seasonality of microzooplankton grazing. From March until April, no grazing was observed. Microzooplankton grazing started in May (0.66 d− 1) and increased until August (1.22 d− 1). In October microzooplankton grazing was low again (0.17 d− 1). Phytoplankton growth rates varied between 0 and 1.1 d− 1. Since the reliability of dilution experiments is still frequently discussed in literature, we tested if our data obtained by dilution experiments reflected short-term in situ phytoplankton dynamics of the study site. We scaled experimental growth rates to water column irradiance, calculated short-term chlorophyll-a dynamics and compared the results to in situ measured chlorophyll-a concentrations. Calculated chlorophyll-a concentrations correlated significantly with in situ measured chlorophyll-a concentrations but slightly overestimated the in situ measured chlorophyll-a. This overestimation was in the range of phytoplankton assimilation reported for the Wadden Sea benthos. We will show that microzooplankton grazing had a large impact during the Phaeocystis bloom and during summer suggesting that a large proportion of phytoplankton biomass remained the pelagic food web. Microzooplankton grazing did not impact the diatom spring bloom and its demise.  相似文献   

20.
Seawater along the southern margin of the Cretan Sea (May 1994–September 1995) has been found to have light transmission values ranging from 79% to 94%, corresponding to SPM values ranging from 1.5 mg l−1 to 0.2 mg l−1. The highest SPM concentrations (mostly of terrigenous origin) were found close to the sea-bed over the shelf-break and upper slope. The origins of SPM in the surface waters (<150 m) is principally biogenic. The occurrence of nepheloid layers at intermediate depths within the upper water column is mostly a result of density stratification. The dynamics of SPM distributions are governed by the 2-gyre system which induces a general onslope flow; and so inhibits the seaward dispersion of the relatively more turbid coastal/shelf waters. This is in agreement with the virtual absence of suspensates of terrigenous origin offshore of the shelf-break. Near bottom nepheloid layers (BNL) and detached intermediate nepheloid layers occur in the vicinity of the shelf-break and over upper slope region; these may be explained by resuspension induced by near-bed current activity and breaking of internal waves. High concentrations of SPM near the seabed may be caused by anthropogenic (trawling) activity. Occasionally, the formation of BNL may result from local seismic activity resulting in gravity-driven mass movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号