首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 216 毫秒
1.
相同高温状态花岗岩在不同冷却温度介质中热冲击下的力学特性不同。热冲击作用下花岗岩的力学强度主要取决于内部热冲击破裂裂隙的密度和数量,其决定因素为热冲击速度和热冲击因子,与热冲击温差没有绝对的相关性。采用自主研制的岩石热冲击破裂试验台对青海共和盆地花岗岩进行热冲击破裂处理,测试其抗压强度、抗拉强度、黏聚力、内摩擦角等宏观力学参数,研究热冲击作用下花岗岩的宏观力学性质及其随冷却温度的演变规律。研究结果表明,(1)相同加热温度的花岗岩,经不同温度冷却介质热冲击破裂后单轴抗压强度、抗拉强度、黏聚力随着冷却介质温度的升高呈现降低趋势,内摩擦角随着冷却介质温度的升高而升高;(2)不同温度恒温水中热冲击下花岗岩的单轴抗压强度和抗拉强度呈有规律的劣化趋势,600℃花岗岩经100℃水热冲击处理后其抗压强度和抗拉强度仅为250℃是经20℃水热冲击作用后的30%;(3)黏聚力随着热冲击破裂程度的加剧呈减小趋势,内摩擦角呈明显增大趋势;(4)热冲击非定常传热对花岗岩力学性质具有劣化作用,干热岩地热人工热储的建造和井筒稳定性控制都需要考虑热冲击作用下花岗岩的强度随冷却介质温度的演变规律。  相似文献   

2.
罗生银  窦斌  田红  陈杰  肖鹏  章诗涛 《地学前缘》2020,27(1):178-184
岩石经过高温作用后其物理力学性质的变化,直接影响着干热岩资源的开发利用与地下储层的稳定性。以花岗岩为研究对象,对高温自然冷却后和实时高温下的岩样进行物理性质测试与单轴压缩试验,分析对比试样在不同状态下的物理力学性质变化情况。结果表明:(1)自然冷却后与实时高温下的花岗岩质量随温度升高而减小,体积随温度升高而增大,600 ℃时,质量损失率分别为0.24%、0.27%,体积增加率分别为4.21%、3.53%;(2)两种方式下试样的峰值强度、弹性模量整体上呈现减小趋势,600 ℃时,峰值强度分别降低约49.81%、37.19%,弹性模量分别降低约34.35%、26.13%,峰值应变分别增长约70.43%、39.62%;(3)低于400 ℃时,自然冷却后的试样各物理力学性质弱化情况低于实时高温下的试样,但高于400 ℃时,自然冷却后的试样物理力学性质弱化情况较实时高温下试样更严重,出现了高温拐点。研究结果为实际工程中高温岩石工程的岩石稳定性评价提供理论参考。  相似文献   

3.
黄真萍  张义  吴伟达 《岩土力学》2016,37(2):367-375
岩石经历高温作用冷却后工程特性的变化情况,直接影响着地下深部空间及资源的开发与利用、核废料的存储以及突发性高温灾害后地下工程的稳定性评价。以大理岩为研究对象,对遇水冷却和自然冷却后的高温岩样进行单轴压缩试验和声波测试,分析和比较岩样在不同状态下峰值强度、弹性模量、衰减系数、纵波波速和主频的变化情况。结果表明:随着温度的不断升高,遇水冷却高温大理岩的峰值强度、弹性模量和纵波波速总体上均呈现减小趋势;低于400 ℃时,随着温度的升高,衰减系数逐渐增大,主频逐渐减小;但高于400 ℃时,随着温度的升高,衰减系数和主频并未完全呈现单调递增或递减趋势,出现了高温拐点;在经历相同高温作用后,遇水冷却大理岩的峰值强度、弹性模量和主频均低于自然冷却,而纵波波速、衰减系数均高于自然冷却。研究结果可以为遇水冷却的高温岩石工程性状的检测和稳定性的评价提供参考,对经历高温作用的岩石冷却方式的选择具有指导意义。  相似文献   

4.
高温花岗岩遇水冷却后物理力学特性试验研究   总被引:1,自引:0,他引:1  
观察500℃内高温花岗岩遇水冷却后的物理力学特性试验研究和SEM图像发现,高温花岗岩遇水冷却后物理力学特性随温度变化规律,揭示其细观机制。结果表明,(1)高温花岗岩遇水冷却后体积随温度升高而膨胀,而质量和密度随温度升高而减小,500℃时体积增加1.32%,质量减小0.21%,密度减小1.51%;(2)纵波波速和横波波速皆随温度升高而降低,且前者降低幅度大于横波波速的,500℃时分别降低64.9%、46.8%;(3)单轴抗压强度和弹性模量随温度呈减小趋势,500℃时分别减小51.9%、58.6%,温度大于300℃时花岗岩表现出明显的塑性特征;(4)温度大于300℃时花岗岩内部微裂纹数目不断增多,尺寸不断增大,并逐步交叉、贯通形成微裂纹网络,导致高温花岗岩遇水冷却后物理力学性质的劣化。  相似文献   

5.
砂岩热储层的改造和长期稳定性评价对地热能源开发具有重要意义。研究了裂隙砂岩在0~8次热冲击作用下的力学特性。试验结果表明:随着热冲击次数的增加,两种冷却方式下裂隙砂岩的纵波波速、单轴抗压强度和弹性模量均逐渐减小。与水冷却相比,空气冷却对裂隙砂岩物理力学特性的劣化较弱,单轴抗压强度和弹性模量与热冲击次数呈现较好的指数函数关系。纵波波速和弹性模量均能很好地表征裂隙砂岩随热冲击次数的损伤,其中首次热冲击对裂隙砂岩力学性能的损伤最为严重,且当热冲击次数超过4次时,热冲击对裂隙砂岩力学特性的损伤显著减缓。此外,裂隙砂岩单轴抗压强度和弹性模量与纵波波速具有很好的指数函数关系。最后,在COMSOL Multiphysics中模拟了砂岩试样热冲击过程,并讨论了对流换热系数和预制裂纹对砂岩内部温度场和应力场的影响,揭示了热冲击作用下砂岩产生热裂纹的机制。  相似文献   

6.
金爱兵  王树亮  魏余栋  孙浩  韦立昌 《岩土力学》2020,41(11):3531-3539
岩石工程可能会经受高温环境。岩石高温后冷却方式的不同往往会导致岩石物理力学性质产生重大变化,这对岩石工程的稳定性、渗透性等都会产生重要影响。采用核磁共振(MRI)、电镜扫描(SEM)和单轴压缩试验对100、300、500、600、800 ℃ 5种不同温度砂岩经两种不同冷却方式(自然冷却和水中冷却)后的孔隙率、孔径分布、峰值强度、峰值应变、应力-应变关系以及微观结构变化等进行研究。试验结果表明:自然冷却时,高温砂岩强度并非随温度升高而持续降低,而水冷却会导致砂岩强度持续降低,且降低幅度远超自然冷却;500 ℃可以看作不同冷却方式对砂岩孔隙率影响的临界值,超过500 ℃,水冷却方式会导致孔隙率急剧增长,大孔径(Ф 10 μm)孔隙所占比例也高于自然冷却,因此,高温砂岩工程采用水冷却方式(如隧道着火后用水灭火)要充分考虑由此可能带来渗透危害;SEM测试表明,当温度 500 ℃时,水冷却对裂纹的增宽和扩展产生促进作用;当温度达到800 ℃时,水冷却砂岩孔洞变大,裂隙更加发育,并贯通连成网络,这会导致透水性大幅提高,同时,这也是该温度水冷却导致强度急剧降低的原因之一。  相似文献   

7.
王春  胡慢谷  王成 《岩土力学》2023,(3):741-756
基于深层地热能开采时储能区井筒围岩所处的工程环境,采用高温加热、不同温度水浸泡、加热-循环次数及径向冲击加载的方法模拟井筒围岩经历的高温、遇水、循环采热及热冲击等造成的动力扰动等物理力学条件。同时,以不同内孔直径的同心圆孔岩样模拟深层地热井,采用分离式霍普金森压杆试验系统开展热-水-力作用下圆孔花岗岩的动态力学试验,并结合VIC-3D非接触应变测量及数值模拟分析技术监测冲击过程中圆孔岩样裂隙萌发、形成的历程和表面应变演化的规律,揭示热-水-力作用下圆孔岩样的动态损伤破坏机制。研究结果表明:径向冲击荷载作用下圆孔花岗岩先后经历弹性变形、塑性变形、结构失稳破坏3个典型阶段;内孔直径、加热温度、浸水温度、加热-浸水循环次数4因素都弱化了圆孔花岗岩抗外界荷载的能力,但未改变其整体的变形演化规律;圆孔花岗岩的破坏模式是动态拉伸破坏,先沿冲击方向由内孔壁向岩样外壁,再垂直冲击方向由岩样外壁向内孔壁萌发、贯通裂纹,形成近垂直的两组破裂面。最后,基于圆孔花岗岩的损伤变形特征及历程,在一定假设基础上,建立动态损伤结构模型,推演了结构方程,并结合试验结果确定了方程参数,通过对比分析发现,理论拟合曲线与试验...  相似文献   

8.
花岗岩样品高温后损伤的试验研究   总被引:9,自引:0,他引:9  
邱一平  林卓英 《岩土力学》2006,27(6):1005-1010
对河南省某地产25块花岗岩样品进行高温预热处理,测量了加温前后弹性纵波波速,并对样品进行单轴压缩应力-应变全过程试验。通过以上试验,给出如下结果:温度对岩石损伤变化的作用;温度对岩石裂隙密度和损伤应变能释放率的影响。实验结果验证了花岗岩的塑性应变主要与偏斜应力产生的形状改变比能有关,而与体积改变比能的关系不大。  相似文献   

9.
为了研究花岗岩在不同温度的多次高温-水冷循环作用下物理力学性质的损伤机制及演化规律,通过对花岗岩开展不同温度下高温-水冷循环试验、单轴抗压强度试验、超声波测试试验,分析研究了相关物理力学参数的变化规律,结果表明:(1)在相同温度作用下,随着高温-水冷循环次数的增加导致岩样内部裂隙的萌生和扩展,表现为花岗岩试样质量损失率的逐渐增加,抗压强度和弹性模量先下降、后小幅上升、最后持续下降。(2)在相同高温-水冷循环次数下,随着温度的增加,花岗岩试样的质量损失不断增加,抗压强度与弹性模量呈持续下降趋势。(3)温度对花岗岩的纵波波速影响较大,随着温度的增加,波速快速下降波幅变得不稳定。(4)温度的升高和高温-水冷循环次数的增加都使花岗岩的损伤程度增大,损伤变量增加。(5)随着温度与高温-水冷循环次数的增加,试样逐渐软化,单轴压缩破坏模式从张拉劈裂破坏向锥形剪切破坏过渡,破坏时表面的裂缝数逐渐增加,400℃之后出现树状裂缝并逐渐贯穿整个表面。可见花岗岩的物理力学性质在高温-水冷循环作用后将发生严重的劣化。  相似文献   

10.
高温花岗岩遇水冷却后可钻性试验研究   总被引:1,自引:0,他引:1  
快速冷却作用下花岗岩可钻性的研究,对提高干热岩坚硬研磨性地层的钻进效率具有重要意义。以花岗岩为研究对象,对不同温度(室温至600℃)遇水冷却后的岩样进行了压入硬度试验、摩擦磨损试验和室内微钻试验。试验结果表明:高温与快速冷却对花岗岩的可钻性产生了显著影响,可钻性上升明显;冷却后的岩样压入硬度减小,塑性系数增大,但600℃的花岗岩仍然处于低塑性阶段;摩擦磨损试验下对磨件胎体与岩样失重量随温度升高逐渐增大,花岗岩的研磨性越来越强;微钻试验下钻进速度加速增大,300℃前后的上升幅度分别为22.5%,110%,这是岩石力学性质劣化、结构破坏的突出反映。试验结果可以为干热岩等中深层地热钻井施工过程中的破岩和钻井技术提供理论指导。  相似文献   

11.
为探究注采参数对松辽盆地干热岩物理力学及波动特征的影响,对不同注采参数下高温遇水冷却后花岗岩进行纵、横波波速测试试验和抗压强度试验。分别考虑注采参数(岩样温度、水温、高温遇水循环次数) 与岩样物理力学特征(外观形态、峰值强度、弹性模量、泊松比)、波动特征(纵、横波波速) 的关联性,建立不同注采参数下力学特征与波动特征拟合曲线,并研究搁置过程中不同岩样温度、不同水温条件下岩体物理力学及波动特征变化规律。研究发现:(1) 搁置初期,岩样温度越高,质量、纵、横波波速、弹性模量降幅越大;水温升高,质量、纵、横波波速、弹性模量降幅先增大后减小。(2) 对采热过程中岩体物理力学及波动特征影响由大到小的注采参数依次为靶区温度、注水循环次数、注水温度。提升岩样温度、增加注水循环次数,岩样力学与波动特征均逐渐下降,提高注水温度变化规律与其相反;经历600℃高温,岩样纵波波速、横波波速、峰值强度、弹性模量降幅分别达到53.44%、58.02%、66.56%、79.84%,高温遇水循环5 次 后降幅依次达到33.61%、33.63%、34.22%、56%。(3) 影响岩样力学与波动特征关联性的注采参数由大到小依次为岩样温度、高温遇水循环次数、水温。此研究能够为松辽盆地热采注采参数的选取提供一定参考。  相似文献   

12.
招远地热田位于胶东隆起区,元古代蚀变花岗岩分布广泛,地下热水微量元素丰富。为查明地下热水微量组分的赋存条件、花岗岩热储环境与地热资源量,利用地下热水水化学分析、热储分析及有效能源换算法,建立Gibbs模型,进行PHREEQC模拟并开展热储估算。研究结果显示:(1)地下热水水化学类型为Cl—Na型,与海水水化学类型一致,...  相似文献   

13.
朱星  唐垚 《地球科学》2022,47(6):1957-1968
为探究花岗岩锁固段边坡模型损伤破坏过程中的微震信号能量、频率分布特征及临界慢化现象,开展了花岗岩锁固段边坡模型的破坏试验研究,利用单轴加载系统对不同岩桥角度的花岗岩锁固段边坡模型进行加载,采用应变片、微震(microseismic,MS)监测系统对其加载全过程进行同步观测.试验结果表明:(1)岩桥角对边坡模型的破坏形式产生影响,当岩桥角为70°和90°时破坏形式以拉张破坏为主;当岩桥角为110°时为拉压混合破坏;当岩桥角为130°时为压剪破坏,前缘蠕滑段为锁固型边坡变形最大的部位.(2)在加载过程中,当存在微小损伤破裂时,主要以高频、低能的微震信号为主,当产生大尺度损伤破裂时会伴随着低频、高能的微震信号.(3)在锁固段边坡模型处于临界破坏状态时会出现明显的临界慢化现象,表现为微震信号的方差、自相关系数产生突增现象,且突增点所对应的时间均达到失稳时间的80%,具有较好的时效性,可将微震信号的方差、自相关系数的突增作为边坡模型的失稳破坏前兆信息.(4)能量比方法与临界慢化理论形成联合预测判据,可克服单一判据的缺点,提高预测的准确性.该研究可为突发型的岩质边坡监测预警提供可用的参考价值.   相似文献   

14.
为了研究岩石在循环爆破作用下的动力学响应,本文对黑云母花岗岩试块进行了小型爆破试验,利用加速度传感器和声波测试仪,分别对循环爆破荷载下质点振动衰减规律与累积损伤演化机理进行了探析,并对不同装药量下花岗岩试块的裂纹扩展与断裂形态进行了比较。结果表明:萨道夫斯基公式对室内花岗岩试块的爆破振动衰减规律具有较好的适用性,拟合相关参数都处于0.90以上;花岗岩的爆破损伤随着爆破次数的增加而增加,且损伤值随着距爆心距离(爆心距)的增加而降低,近区损伤值迅速降低,降幅约为1.46/m,而中区和远区损伤值降低相对缓慢,约为0.57/m和0.13/m;花岗岩的破坏程度和装药量有较高的关联度,当药量较低时,岩块致裂所需要的爆破次数就越大;随着药量增加到一定程度,岩块在低爆破次数下就会发生破坏;此外,还发现随着装药量的增加,试块爆后破裂的块数呈现增加趋势,如较低药量时试样破裂成2块,较高药量下破裂成3~4块。  相似文献   

15.
汤明高  许强  邓文锋  陈旭  周剑  赵欢乐 《地球科学》2022,47(6):1917-1931
为了探究川藏交通廊道沿线典型岩石冻融循环条件下的劣化规律,选取昌都-林芝段的花岗岩、片麻岩和砂岩为试验对象,开展冻融循环条件下岩石加卸荷试验,结果表明:(1)随着冻融循环次数的增加,岩石抗压强度损失率达30%,粘聚力降幅达18.4%,内摩擦角降幅达10.5%,弹性模量逐渐下降,泊松比逐渐增加;(2)三轴压缩试验中,岩样的变形模量呈现与抗压强度类似的劣化趋势,但是变形模量的劣化幅度比抗压强度劣化幅度大;冻融循环作用下岩石抗压强度越大劣化程度越低,对砂岩的劣化最明显,片麻岩次之,花岗岩最小;(3)与三轴压缩试验相比,在卸围压试验中,冻融循环作用对岩石的卸荷量同样有劣化作用,卸荷程度较小时岩石劣化并不明显,随着卸荷量的逐渐增加,卸荷量大于80%时,岩石的变形模量呈指数型下降,泊松比呈指数型增加;(4)随着冻融循环次数的增加,三轴压缩试验中由拉张和剪切破坏造成的裂纹数量增多;卸围压试验中岩石以拉张破坏为主;岩石微裂纹数量增加的同时,不平整度增加,矿物颗粒之间的胶结状态变差;(5)综合试验结果分析,冻融作用对岩石劣化作用最强的为砂岩,其次是片麻岩,最弱为花岗岩.   相似文献   

16.
地热能源是目前绿色建筑的发展趋势,但红层软岩分布地区出现的系列建筑地基病害问题与地源热系统关系尚不清楚。依托成都某建筑群事故调查项目,研究了有无地热系统作用下泥岩、石膏岩的工程特性,并基于室内试验模拟,研究了不同加热方式、不同温度及不同浸水时间等因素下岩石宏观力学特性和微观结构特征。结果表明:(1)同一场地有无地热系统对岩石力学性质影响甚微,但有地热系统时岩体中裂隙发育数量明显增多,累积张开度明显增大;(2)随着浸泡时间增加,泥岩最大含水率可达30%以上,石膏岩含水率超不过15%,泥岩浸水软化效应较石膏岩显著,二者力学指标随含水率增加呈负指数型下降,石膏岩因晶粒大小不同,离散性大;(3)天然状态下石膏岩呈脆性破坏,泥岩呈延性破坏,石膏岩水岩界面溶蚀作用效应显著,随着石膏岩由表及里溶蚀加剧,温度变化效应对岩体内生裂隙萌发起一定促进作用;(4)在20~50 ℃温度变化范围内,石膏岩抗压强度随温度呈抛物线变化,而泥岩单调升高;(5)地热管与岩体间填筑不密实容易形成渗水通道,改变水动力条件,动水作用下使石膏岩裂隙及软弱夹层溶蚀加剧,形成更大空洞,从而诱发沉降。  相似文献   

17.
高温作用后花岗岩三轴压缩试验研究   总被引:2,自引:0,他引:2  
徐小丽  高峰  张志镇 《岩土力学》2014,35(11):3177-3183
为综合考察温度、围压对花岗岩力学性质及破坏方式的影响,在高温(25℃~1 000 ℃)作用后,利用MTS815.02电液伺服材料试验系统对花岗岩岩样进行不同围压作用下的三轴压缩试验。研究结果表明,(1)围压一定时,经历不同高温作用后花岗岩三轴压缩全应力-应变曲线经历了压密、弹性、屈服、破坏、塑性流动5个阶段;(2)经历不同高温作用后岩样三轴抗压强度与围压呈非线性二次多项式增长关系,围压为40 MPa时的抗压强度比单轴抗压强度提高了382.30%;常规三轴压缩条件下,400 ℃是花岗岩力学参数的阀值温度;(3)经历高温作用后,岩样弹性模量随围压升高呈增大趋势,围压为40 MPa时的弹性模量比单轴时提高了90.26%;随温度升高呈二次非线性减小,1 000 ℃时的弹性模量比25℃时降低了57.16%;(4)花岗岩的失稳型式同时取决于围压和温度。单轴压缩状态下,随着温度的升高,岩样变形破坏型式由脆性破裂向塑性变形过渡,失稳型式在低温时为突发失稳、中高温为准突发失稳,温度高于800 ℃为渐进破坏;三轴压缩状态下,随着围压的增大,岩样破裂型式由脆性张拉破裂逐渐向剪切破裂过渡,岩样的失稳型式以突发失稳为主。在试验温压范围内,影响花岗岩力学性质的首要因素是温度,其次是围压。  相似文献   

18.
严鹏  张晨  高启栋  卢文波  陈明  周创兵 《岩土力学》2015,36(12):3425-3432
声波波速变化可有效表征岩体损伤程度。通过对岩样进行人工预损,利用声波检测标定岩样的不同损伤程度,然后通过三轴压缩试验来研究不同损伤程度下岩石的力学特性,建立了声波速度下降幅度与岩体力学参数变化幅度间的关系。研究表明,当岩样的声波速度下降5%~8%时,黏聚力c值降低15%~25%,内摩擦角? 值则升高14%~32%,因此,用声波速度的下降幅度来描述岩体参数的变化是可行的。根据现场实测的岩体损伤区内的声波速度的变化值,可以从一定程度上估计岩体参数的跌落情况,从而更进一步地说明损伤区内岩体的承载力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号