首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crustose species are the slowest growing of all lichens. Their slow growth and longevity, especially of the yellow-green Rhizocarpon group, has made them important for surface-exposure dating (lichenometry). This review considers various aspects of the growth of crustose lichens revealed by direct measurement including: 1) early growth and development; 2) radial growth rates (RGR, mm yr−1); 3) the growth rate–size curve; and 4) the influence of environmental factors. Many crustose species comprise discrete areolae that contain the algal partner growing on the surface of a non-lichenized fungal hypothallus. Recent data suggest that 'primary' areolae may develop from free-living algal cells on the substratum while 'secondary' areolae develop from zoospores produced within the thallus. In more extreme environments, the RGR of crustose species may be exceptionally slow but considerably faster rates of growth have been recorded under more favourable conditions. The growth curves of crustose lichens with a marginal hypothallus may differ from the 'asymptotic' type of curve recorded in foliose and placodioid species; the latter are characterized by a phase of increasing RGR to a maximum and may be followed by a phase of decreasing growth. The decline in RGR in larger thalli may be attributable to a reduction in the efficiency of translocation of carbohydrate to the thallus margin or to an increased allocation of carbon to support mature 'reproductive' areolae. Crustose species have a low RGR accompanied by a low demand for nutrients and an increased allocation of carbon for stress resistance; therefore enabling colonization of more extreme environments.  相似文献   

2.
Botanists make yearly measurements of lichen sizes that describe highly variable radial expansion of young, and old, Rhizocarpon subgenus Rhizocarpon that is a function of thallus size and age. Such non‐uniform growth would negate use of lichens to date geomorphic events, such as landslides and moraines, of the past 1000 years. Fortunately, many crustose lichens tend toward circular shapes, which can be achieved only when overall uniform radial growth prevails. Largest lichen measurements on rockfall blocks that accumulate incrementally as hillslope talus in earthquake‐prone California plot as distinct peaks in frequency distributions. Rockfall surface‐exposure times are known to the day for historical earthquakes and to the year where mass movements damage trees. Lichenometry consistently dates regionally synchronous rockfall events with an accuracy and precision of ±5 years. Only historical records and tree‐ring dating of earthquakes are better. The four crustose lichens used here have constant long‐term growth rates, ranging from 9.5 to 23.1 mm per century. Growth rates do not vary with altitude or climate in a 900 km long mountainous study region in California, USA. Linear growth regressions, when projected to the present, constrain estimates of colonization time and possible styles of initial lichen growth.  相似文献   

3.
This paper presents a critical review of previous lichenometric and lichen growth studies in southern parts of West and East Greenland. These studies include classic work from around Søndre Strømfjord, Sukkertoppen, Sermilik and Angmagssalik. Particular emphasis is placed on those studies examining the role played by climatic continentality on the growth rate of crustose lichens in Greenland. The latter part of the paper presents new data on lichen growth rates from Sermilik, between 2001 and 2006, in 22 different lichen species. Measurements show that different species grow at different rates and growth rates vary from site to site. In this study Rhizocarpon geographicum generally grows slowly (<0.2 mm a−1) while other species such as Pseudephebe minuscula grow more rapidly (1.0 mm a−1) in the same environment. Comparison with other studies shows that taxa-specific growth rates are slightly greater in West than in East Greenland – probably as a result of the slightly more favourable climate and higher precipitation levels. It is suggested that recent climate change, most marked in southern Greenland, will probably result in changed growth curves (over time) for species such as Rhizocarpon geographicum . However, only more precise growth curves and lichenometric dating curves can demonstrate such a phenomenon.  相似文献   

4.
Scotland, a maritime subpolar environment (55–60°N), has seen relatively few applications of lichenometry – even though it offers much potential. Perhaps surprisingly, direct measurements of Rhizocarpon geographicum growth rates in Scotland are so far lacking. This study reports on the growth of this crustose areolate species from two sites in Assynt, NW Scotland, between 2002 and 2009. Repeat photography of 23 non-competing thalli growing under identical environmental conditions on a single vertical surface over 5 years at Inchnadamph showed growth rates to be a function of size – with larger thalli (10–30 mm) growing significantly faster than the smallest thalli (<10 mm). Mean diametral growth rates in thalli >10 mm are 0.67 mm yr−1 (s.d. = 0.16). Studies on a second vertical surface near Lochinver, over 7 years, yielded complex growth data on a more mature population of R. geographicum thalli (<50 mm in diameter). Here, mean diametral growth rates in the larger thalli (>10 mm) are slower (0.29 mm yr−1; s.d. = 0.12) than those at Inchnadamph. However, at this site, competition with other species rules out any meaningful comparison of growth rates between the two sites. Other growth processes were monitored over the five to seven-year study period, including hypothallus growth, areolae development, thallus coalescence, and inter-species competition – all have important implications for the use of Rhizocarpon species in lichenometry.  相似文献   

5.
Lichenometric dating (lichenometry) involves the use of lichen measurements to estimate the age of exposure of various substrata. Because of low radial growth rates and considerable longevity, species of the crustose lichen genus Rhizocarpon have been the most useful in lichenometry. The primary assumption of lichenometry is that colonization, growth and mortality of Rhizocarpon are similar on surfaces of known and unknown age so that the largest thalli present on the respective faces are of comparable age. This review describes the current state of knowledge regarding the biology of Rhizocarpon and considers two main questions: (1) to what extent does existing knowledge support this assumption; and (2) what further biological observations would be useful both to test its validity and to improve the accuracy of lichenometric dates? A review of the Rhizocarpon literature identified gaps in knowledge regarding early development, the growth rate/size curve, mortality, regeneration, competitive effects, colonization, and succession on rock surfaces. The data suggest that these processes may not be comparable on different rock surfaces, especially in regions where growth rates and thallus turnover are high. In addition, several variables could differ between rock surfaces and influence maximum thallus size, including rate and timing of colonization, radial growth rates, environmental differences, thallus fusion, allelopathy, thallus mortality, colonization and competition. Comparative measurements of these variables on surfaces of known and unknown age may help to determine whether the basic assumptions of lichenometry are valid. Ultimately, it may be possible to take these differences into account when interpreting estimated dates.  相似文献   

6.
Variation in lichen growth rates poses a significant challenge for the application of direct lichenometry, i.e. the construction of lichen dating curves from direct measurement of growth rates. To examine the magnitude and possible causes of within‐site growth variation, radial growth rates (RaGRs) of thalli of the fast‐growing foliose lichen Melanelia fuliginosa ssp. fuliginosa (Fr. ex Duby) Essl. and the slow‐growing crustose lichen Rhizocarpon geographicum (L.) DC. were studied on two S‐facing slate rock surfaces in north Wales, UK using digital photography and an image analysis system (Image‐J). RaGRs of M. fuliginosa ssp. fuliginosa varied from 0.44 to 2.63 mm yr–1 and R. geographicum from 0.10 to 1.50 mm yr–1.5. Analysis of variance suggested no significant variation in RaGRs with vertical or horizontal location on the rock, thallus diameter, aspect, slope, light intensity, rock porosity, rock surface texture, distance to nearest lichen neighbour or distance to vegetation on the rock surface. The frequency distribution of RaGR did not deviate from a normal distribution. It was concluded that despite considerable growth rate variation in both species studied, growth curves could be constructed with sufficient precision to be useful for direct lichenometry.  相似文献   

7.
The reliability of lichenometric dating is dependent on a good understanding of lichen growth rates. The growth rate of lichens can be determined from direct measurement of growing lichens or indirect methods by measuring lichens growing on surfaces of known age, although there are limitations to both approaches. Radiocarbon (14C) analysis has previously been used in only a handful of studies to determine lichen growth rates of two species from a small area of North America. These studies have produced mixed results; a small amount of carbon turnover appears to occur in one of the species ( Caloplaca spp.) previously investigated introducing uncertainty in the growth rate, while much higher carbon cycling occurred in another ( Rhizocarpon geographicum ), making the 14C approach unsuitable for estimating growth rates in the species most commonly used in lichenometric dating. We investigated the use of bomb-14C analysis to determine the growth rate of a different crustose species ( Pertusaria pseudocorallina ) common to Northern Europe. 14C-based growth rates were considerably higher than growth rates of morphologically similar species based on direct measurement made at locations nearby and elsewhere in the UK. This observation strongly suggests that a degree of carbon turnover probably occurs in Pertusaria pseudocorallina , and that bomb-14C analysis alone cannot be used to determine lichen age or absolute growth rates in this lichen species.  相似文献   

8.
Though the ability of lichens to disaggregate and dissolve the substrate is understood, zones of disparate weathering mechanisms examined in this study were previously unobserved. On a steep (60°) northern (340°N) slope on Red Mountain, Arizona, a 5×5 m study plot was chosen for its maximum lichen coverage (33%) of the same lichen genus Xanthoparmelia in varying growth stages, on a sandstone substrate of consistent lithology. From twenty-two (22) representative lichen thalli, portions were removed to examine sub-thallic rhizine density, and others were resin-inbedded for optical, scanning and backscatter electron microscopy.
In every sample, sandstone beneath and adjacent to the lichen thallus displayed disparate weathering mechanisms. Beneath the center of the lichen cortex, where rhizine density was observed to be the greatest, rhizine penetration disaggregated the sand-stone clasts from the matrix, but little chemical dissolution was apparent. This study found physical weathering predominates beneath the lichen cortex, and chemical weathering predominates at the thallus fringe and beyond the thallus boundary. It was generally found that physical weathering decreased (disaggregation) and chemical weathering increased (dissolution) from the cortex center to the thallus edge. Toward the thallus fringe, minimal clast disaggregation was observed, and substrate dissolution was obvious.  相似文献   

9.
Lichen-dominated soil crusts as arthropod habitat in warm deserts   总被引:2,自引:0,他引:2  
Soil crust lichens can be the dominant vegetation in arid lands, yet their importance as habitat to secondary producers is relatively unknown. This study examines the distribution of arthropod communities in the northern Namib Desert to evaluate whether a lichen-rich area is more or less productive than adjacent habitats in terms of the consumers each supports. Arthropods are diverse and highly endemic in the Namib Desert and lichens dominate this desert's extensive gravel plains. We sampled lichen-rich, dwarf shrub, and unvegetated sites and found distinct arthropod assemblages in the lichen-dominated sites, including species unique to lichen sites. Arthropod assemblages in two of the lichen sites were similar to those found in the dwarf shrub site. In a canonical correspondence analysis, crustose lichens and overall lichen cover were key in driving the variance in arthropod assemblages within the lichen sites. Furthermore, lichen morphotypes, overall lichen cover and species richness, were significantly correlated with the representation of arthropod subgroups and arthropod species richness. These findings provide evidence that lichen-dominated soil crusts in the Namib Desert are important supporters of secondary production, warranting more in-depth studies into the ecology and conservation of this lichen-rich habitat in warm deserts.  相似文献   

10.
对采集自南极乔治王岛和北极新奥尔松地区的32份地衣标本中共生藻rDNA ITS序列进行测定,发现均为Trebouxia jamesii;结合Genbank中来自不同地区地衣中该藻的序列信息,发现T. jamesii的基因型与地衣物种及采集地都没有明确的对应关系。广布于全球范围的T. jamesii作为地衣优势共生藻,存在多种基因型,并且可以被多种地衣共生菌选择;其中优势基因型A在采集自南极洲、欧洲、北美洲和北极地区的地衣中均有发现,而其它基因型则在一定程度上出现地区特有性。本研究为地衣中的藻交换提供了证据,并提出地衣体碎片是实现地衣共生藻长距离传播的载体。  相似文献   

11.
The interception and evaporation of fog, dew and water vapour by soils and lichens in a coastal desert were measured with automated lysimeters at hourly intervals spanning a 12 month period. Fog water and lichen thalli were chemically analysed at monthly intervals. The chemical composition of the lichens did not correspond with the elemental concentration sequence in collected fog water of oceanic origin. However, elemental concentrations were generally greater in Teloschistes capensis, whose canopy area to dry mass ratio was higher than that of Ramalina sp., indicative of a more efficient mineral absorbing thinner thallus. Non-rainfall atmospheric moisture intercepted by the bare gypsum soil was 10 times greater and that solely by the lichens up to 3 times greater than the measured rainfall amount. Water vapour contributed the highest percentage of the non-rainfall atmospheric moisture absorbed by the lichens and bare soil, followed by fog, with dew contributing the smallest percentage. T. capensis displayed two-fold greater interception and two-thirds less evaporation of non-rainfall atmospheric moisture than Ramalina sp. which may explain T. capensis 3 times greater canopy cover. Our results substantiate the crucial role of atmospheric water vapour and fog in driving lichen photosynthesis and distribution in a coastal desert.  相似文献   

12.
Trimmed lichen communities (lichen limits) are abrupt changes from a lichen community to a scoured bare rock surface and have been used to determine bankfull channel capacity on bedrock channels and their response to the combined disturbances of flow regulation and climate change. They can also be used to set flushing flows in bedrock channels. In sandstone gorges of the Nepean River, Australia, the crustose lichen, Lecidea terrena Nyl, was common at both gorge and cemetery (sandstone headstones) sites, enabling construction of growth curves for above and below dam areas. Growth curves were used to date lichen colonisation of sandstone surfaces in rivers. The oldest, highest lichen limit at all sites represented the pre‐flow regulation lichen community because its characteristics above and below Nepean Dam were similar and were trimmed to a level that produced consistent discharges across a range of catchment areas. They corresponded to return periods of less than 2 years on the annual maximum series and was developed during the flood‐dominated regime (FDR) of 1857–1900. Lichen limits form by the phycobiont dominating the mycobiont and hence degrading lichen thalli due to water inundation causing weak or dead thalli to be scrubbed from the rock surface. Trimming to the unregulated lichen limit represents a small flood of frequent occurrence appropriate for flushing bedrock channels. A lower lichen limit was only found below a diversion weir and was formed by frequent dam spills between 1950 and 1952 during an extraordinary wet period at the start of the FDR between 1949 and 1990. Lichens colonised exposed sandstone between the level of frequent flows from 1949 to 1952, and the high lichen limit. On the Avon River, an additional lower limit reflected a massive downward shift in flow duration following the start of interbasin diversions to Wollongong in 1962.  相似文献   

13.
《Polar Science》2014,8(4):397-412
We used observational and experimental analyses to investigate the photosynthetic activity and water relationships of five lichen species attached to different substrates in a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard (79°N) during the snow-free season in 2009 and 2010. After the rains ceased, lichens and their attached substrates quickly dried, whereas photosynthetic activity in the lichens decreased gradually. The in situ photosynthetic activity was estimated based on the relative electron transportation rate (rETR) in four fruticose lichens: Cetrariella delisei, Flavocetraria nivalis, Cladonia arbuscula ssp. mitis, and Cladonia pleurota. The rETR approached zero around noon, although the crustose lichen Ochrolechia frigida grown on biological soil crust (BSC) could acquire water from the BSC and retain its WC to perform positive photosynthesis. The light-rETR relationship curves of the five well-watered lichens were characterized into two types: shade-adapted with photoinhibition for the fruticose lichens, and light-adapted with no photoinhibition for O. frigida. The maximum rETR was expected to occur when they could acquire water from the surrounding air or from substrates during the desiccation period. Our results suggest that different species of Arctic lichens have different water availabilities due to their substrates and/or morphological characteristics, which affect their photosynthetic active periods during the summer.  相似文献   

14.
A unique 25-year lichen growth monitoring programme involving 2,795 individuals of the Rhizocarpon subgenus at 47 sites on 18 glacier forelands in the Jotunheimen–Jostedalsbreen regions of southern Norway is reported. The data are used to address fundamental questions relating to direct lichenometry: spatial and temporal variability in lichen growth rates, climatic effects on lichen growth rates, lichen growth models, and implications for lichenometric dating. Mean annual (diametral) growth rate ranged from 0.43 to 0.87 mm yr−1 between sites, which is attributed primarily to local habitat differences. Interannual variability in annual mean growth rate exceeded 1.0 mm yr−1 at some sites. Annual mean growth rates for all sites combined varied from 0.52 to 0.81 mm yr−1 and was positively correlated with annual mean temperature and winter mean temperature (both r = 0.64, p <0.005) but not with summer seasonal temperature: positive correlations with annual and winter precipitation were less strong and the correlation with summer precipitation was marginally significant (r = 0.41 p <0.10). Growth-rate models characterized by annual growth rates that remain approximately constant or increase with lichen size up to at least 120 mm tended to fit the data more closely than a parabolic model. This is tentatively attributed to a long 'linear/mature' phase in the growth cycle. Comparison with growth rates inferred from indirect lichenometry suggest that such high measured growth rates could not have been maintained over the last few centuries by the largest lichens used in southern Norway for lichenometric dating. Several hypotheses, such as the effects of competition and climate change, which might explain this paradox, are discussed.  相似文献   

15.
Contemporary variants of the lichenometric dating technique depend upon statistical correlations between surface age and maximum lichen sizes, rather than an understanding of lichen biology. To date three terminal moraines of an Alaskan glacier, we used a new lichenometric technique in which surfaces are dated by comparing lichen population distributions with the predictions of ecological demography models with explicit rules for the biological processes that govern lichen populations: colonization, growth, and survival. These rules were inferred from size–frequency distributions of lichens on calibration surfaces, but could be taken directly from biological studies. Working with two lichen taxa, we used multinomial‐based likelihood functions to compare model predictions with measured lichen populations, using only the thalli in the largest 25% of the size distribution. Joint likelihoods that combine the results of both species estimated moraine ages of ad 1938, 1917, and 1816. Ages predicted by Rhizocarpon alone were older than those of P. pubescens. Predicted ages are geologically plausible, and reveal glacier terminus retreat after a Little Ice Age maximum advance around ad 1816, with accelerated retreat starting in the early to mid twentieth century. Importantly, our technique permits calculation of prediction and model uncertainty. We attribute large confidence intervals for some dates to the use of the biologically variable Rhizocarpon subgenus, small sample sizes, and high inferred lichen mortality. We also suggest the need for improvement in demographic models. A primary advantage of our technique is that a process‐based approach to lichenometry will allow direct incorporation of ongoing advances in lichen biology.  相似文献   

16.
为开展新奥尔松地区苔原植物生长和植被演替对冰川退缩响应的研究,在Austre Lovénbreen冰川(简称A冰川)前沿不同年代冰缘线附近布设了植被样方,调查了样方内植物组成与群落结构。结果表明:(1)A冰川1990年冰缘线代表植被演替的初始阶段,样方内仅出现先锋植物挪威虎耳草(Saxifraga oppositifolia);(2)1936年冰缘线代表冰川退缩长达75年后植被发育的情况,样方内植物种类和个体数明显增多,植被群落以木本植物极柳(Salix polaris)和草本植物黄葶苈(Draba bellii)为主,地衣以寒生肉疣衣(Ochrolechia frigida)和鸡皮衣(Pertusaria sp.)等壳状地衣为主;(3)随着冰川迹地形成时间更长,植被趋向成熟阶段发展,样方内极柳占绝对优势,地衣的物种多样性和盖度显著增加,出现雪黄岛衣(Flavocetraria nivalis)和刺岛衣(Cetraria aculeata)等叶状地衣。初步结果表明冰川退缩迹地上的物种更替明显,群落结构发生着显著变化。  相似文献   

17.
This study presents a growth curve developed from direct and indirect growth rates of Rhizocarpon geographicum lichens from study sites on Mounts Baker, Rainier, Adams, and Hood in the northern Cascade Range of the western USA. Our observations of direct growth rates are based on 31 measurements of 11 lichens growing on different surfaces. This direct growth rate dataset is complemented by indirect growth rates based on measurements of the largest lichen observed on 20 different surfaces over 24–33‐yr periods. The direct and indirect datasets produce statistically indistinguishable mean radial growth rates of 0.48 and 0.50 mm yr?1, respectively. Statistical analysis of zero and first order fits of our growth rate data suggests that lichen growth is best characterized by the average of our mean growth rate (zero order) models at 0.49 mm yr?1. Our revised growth curve for the study area extends the applicable range for dating rock surface in the study area to the seventeenth century, approximately 175 years longer than previous calibrated curves.  相似文献   

18.
The recently observed recession of glaciers on King George Island is associated with decades of climate warming in the Antarctic Peninsula region. However, with only 60 years of glaciological observations in the study area ages of the oldest moraines are still uncertain. The goal of the study was to estimate ages of lichen colonization on the oldest moraines of the Ecology and White Eagle Glaciers on King George Island and on the Principal Cone of Penguin Island volcano. The first lichenometric studies on these islands from the late 1970s used rates that had about four to five times slower Rhizocarpon growth rates. We re‐examined the sites and measured 996 thalli diameters to establish the surface ages. To estimate the age we used (1) long‐term Rhizocarpon lichen group growth rates established by authors using data from a previous lichenometric study on King George Island, and (2) previous data of lichen growth rates from other sub‐Antarctic islands. Our results suggest growth rates between 0.5 and 0.8 mm yr–1. According to these rates the ages of the oldest moraine ridges are of the Little Ice Age and were colonized at the beginning of the twentieth century. The mid‐twentieth century age of lichen colonization on the historically active Penguin Island volcano might support the date of the last eruption reported by whalers in the end of the nineteenth and the beginning of the twentieth century.  相似文献   

19.
This paper highlights the importance for dating accuracy of initial studies of delay before colonization for both trees and lichens and tree age below core height, particularly in recently deglaciated terrain where colonization and growth rates may vary widely due to differences in micro-environment. It demonstrates, for the first time, how dendrochronology and lichenometry can be used together in an assessment of each other's colonization and growth rates, and then cross-correlated to provide a supportive dating framework. The method described for estimating tree age below core height is also new. The results show that on the east side of the North Patagonian Icefield in the Arco and Colonia valleys, Nothofagus age below a core height of 112 cm can vary from 5 to 41 years and delay before colonization may range from a maximum of 22 years near water to a minimum of 93 years on the exposed flanks of the Arenales and Colonia Glaciers. Tree age plus colonization delay supplied a maximum growth rate of 4.7 mm/year for the lichen Placopsis perrugosa and lichen colonization is estimated to take from 2.5 to approximately 13 years. A minimum lichenometric date of 1883 was estimated for an ice-formed trimline at the junction of the Arenales and Colonia glaciers and a maximum dendrochronological date of 1881 for a water-formed trimline in the Arco valley. Tree and lichen ages around the valley suggest that a glacial outburst drained the 1881 high level lake releasing approximately 265 million cubic metres of water. Repeated flooding, with a minimum of 38 high lake levels, is suggested by horizontal sediment lines on the Arco valley walls and moraine flanks. Dating confirmed diminishing flood levels with a last minor flood in 1963. The wider significance of the work is that it should produce more accurate dating of recent glacier fluctuations around the North Patagonia Icefield, an area where dated reference surfaces are extremely scarce.  相似文献   

20.
Saxicolous species of lichens are able to induce and accelerate weathering of their rock substrate, and effects of lichens on substrate can be attributed to both physical and chemical causes. This paper is focused on biotic weathering actions of epilithic and endolithic species on the different rock types (sandstones and volcanogenic rocks) in Antarctica. The patterns, mechanisms, processes and neoformations of rock-weathering resulting from lichen colonization are expounded in detail. Furthermore, it is pointed out that, for a better understanding of the impacts of lichens on environments, the studies on the rate of biotic weathering and the comprehensive involvement of the lichen effects on weathering of natural rocks remain to be carried out in Antarctica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号