首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Mary Valley manganese deposits exhibit mineralogy and textures characteristic of at least four parageneses. The deposits consist mainly of isolated occurrences of braunite, together with a number of lower and higher valency manganese oxides, and manganese silicates, in bedded radiolarian cherts and jaspers of Permian age. The parageneses are: (a) Braunite — quartz (primary), (b) Braunite — hausmannite — spessartine — tephroite — quartz (metamorphic). (c) Hydrated manganese silicates — barite — braunite — hausmannite (hydrothermal veins), (d) Tetravalent manganese oxides (pyrolusite, cryptomelane, manjiroite, nsutite) (supergene). The primary mineralisation is interpreted as the result of the geochemical separation of Mn from Fe in a submarine exhalative system, and the precipitation of Mn as oxide within bedded radiolarian oozes and submarine lavas. During diagenesis this hydrothermal manganese oxide reacted with silica to produce primary braunite. The later geological of evolution of this volcanogenicsedimentary deposit involved metamorphism, hydrothermal veining by remobilised manganese, and supergene enrichment.  相似文献   

2.
西秦岭南亚带中的拉尔玛硅岩型金-铜-铀矿床,是一个比较典型的与海底喷流作用有关的金矿床。矿床赋存于寒武系太阳顶群中。太阳顶群地层由硅岩、板岩组成,厚度近千米。现已发现的矿体,80%以上产于硅岩中。硅质岩的地质地球化学特征表明,它是海底喷气沉积作用的产物,拉尔玛金-铜-铀建造矿床也具有海底喷流的沉积特征。  相似文献   

3.
山西五台金岗库矿床成矿作用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
赵娜  王忠梅  王浩  韩春明 《地质科学》2019,54(2):608-641
金岗库矿床位于华北克拉通中部造山带,具有典型的VMS与BIF共生特征。本文对金岗库矿床的地质与地球化学特征进行系统研究,探讨金岗库硫化物矿石与磁铁石英岩的共生特点与成矿动力学模式。研究表明,硫化物矿体受地层及岩性控制,多呈扁豆、层状—似层状赋存于五台绿岩带金岗库组的磁铁石英岩、斜长角闪岩、斜长片岩和云母石英片岩中。矿石中金属矿物组合为黄铁矿—黄铜矿—磁黄铁矿—磁铁矿,矿石主要呈半自形—他形粒状结构和块状、条带状构造,围岩蚀变为绿泥石化和绢云母化。斜长角闪岩的原岩恢复,表明斜长角闪岩的原岩为拉斑玄武岩,可能形成于岛弧环境。LA-ICP-MS锆石U-Pb定年显示变基性火山岩的原岩形成于2 500 Ma,代表了金岗库矿床的成矿年龄。变质流体体系的成分模式为H2O-NaCl-CO2-CH4±N2±H2,变质峰期为中高温(322℃~473℃)、低盐度(2.2%~6.74%)的热液流体,并叠加少量中高温(290℃~470℃)、高盐度(37.4%~55.79%)的岩浆热液流体;峰后阶段为中低温(225℃~302℃)、中低盐度(4.03%~11.81%)的热液流体。金岗库矿床赋存的磁铁石英岩和硫化物矿体紧密共生,具有相同的成矿时代、物质来源和变质变形历史。综合以上研究认为金岗库矿床的成因类型为海相火山喷流沉积—变质热液流体叠加改造型。  相似文献   

4.
西秦岭南亚带的拉尔玛Se-Cu-U-Ni-Mo-PGE-Au矿床是迄今为止我国仅见的与海底喷流作用有关的金矿床。它赋存于寒武系太阳顶群中,受地层控制明显。太阳顶群由硅岩、泥质硅岩和板岩组成,厚度近千米。现已发现的矿体,80%以上产于硅岩中。控矿的硅岩乃海底喷流的产物,海底喷流作用也导致了Au、PGE、Se以及其它成矿元素的富集,是贵金属元素的主要来源。尤为重要的是,近来在硅岩中发现了Se的矿化现象。因此该矿床是一个较典型的、海底喷流成因的硒-贵金属矿床。  相似文献   

5.
西秦岭寒武纪硅岩建造中的金矿床,其形成与成矿热液沿纵向、横向及轴向的渗滤和扩散作用密切相关。由于元素组分在各个方面出现浓度(含量)的差异,使矿床中成矿元素分带甚为明显。元素的分带最终导致了Au、Se、U、Cu、Mo、Sb、Hg等元素在三维空间各自构成单一或复合型的矿(化)体。  相似文献   

6.
The gold deposits,occurring in the south subzone of western Qinling,are the only typical and important strata-bound gold deposits,which are associated with submarine exhalative sedimentation.The gold deposits include the La‘erma ore deposit,the Qiongmo ore deposit and the Yaxiang ore occurrence.They are hosted i the Cambrian silicalite formation composed of black chert and slate.The presence of typical chert offers important evidence to evaluate the possible submarine exhalative system and its role in the formation of the gold deposits,which are closely associated with peroclation and diffusion in the horizontal,vertical and axial directions,Element-assemblage zonation is clearly seen due to differences in element concentrations in different directions,Such a zonation makes gold.selenium,uranium,copper,stibium,molybdenum,mercury,etc,precipitate in the form of simple or composite orebodies.The establishent of the element-assemblage zonation is highly helpful for evaluating directly the metallogenesis of gold deposits.  相似文献   

7.
建德铜矿床的海底喷流沉积成因   总被引:2,自引:0,他引:2  
建德铜矿床是浙江西部多金属成矿带中一个引人瞩目的重要矿床。它产于中石炭统底部伴有火山岩、硅质岩和碧玉岩的白云岩中。整合块状矿体之下有一筒状矿化蚀变带。其成分以Cu>Zn>Pb为特征。根据矿床地质、地球化学特征以及近年来研究所获得资料,认为该矿床属海底喷流沉积成因  相似文献   

8.
中条山地区胡-篦型层控铜矿床角砾岩的特征及成因探讨   总被引:6,自引:0,他引:6  
中条山铜矿区位于华北地台南缘,与胡-篦型层控铜矿床空间上紧密伴生。且广泛发育有一套角砾岩。根据角砾岩产状可分为两个层位,一是矿体底盘角砾岩,仅分布在老宝滩—店头一带,出露规模较大,基本不含矿;二是含矿层角砾岩,分布范围广,规模较小,矿化强烈。根据角砾岩和胶结物的成分及结构特征,笔者认为本区角砾岩是与海底热液喷气活动有关的热液沉积角砾岩。  相似文献   

9.
Anatase and its allomorphic mineral rutile have the most prominent economic significance among titanium mineral resources and constitute one of the badly needed mineral resources currently in China. The Yantizishan-Moshishan anatase deposit was formerly referred to as an iron deposit. Based on recent investigation and exploration the authors believe that it is actually a large metamorphosed sedimentary anatase-dominated deposit belonging to a new genetic type. Ore bodies occur in stratoid and lenticular forms in Mesoproterozoic (1751 Ma) schist, metasandstone (metasiltstone), and amphibolite. Rich ores have perthitic structure comprising chiefly interbedded quartz perthite (with disseminated anatase and rutile) and anatase perthite. Ore minerals are mainly anatase and subordinately rutile and ilmenite (±hematite), while nonmetallic minerals are chiefly quartz with a certain amount of anthophyllite and biotite (±garnet). The grain sizes of anatase, rutile and ilmenite are 0.01–0.1 mm. Rich ores contain 3.14% to 15.46% TiO2, averaging 6.91%, while the low-grade ores have TiO2 content about 1.2%to 2.97%, averaging 1.76%. The ores have relatively high TFe and V contents. Trace elements in anatase and rutile such as Nb and Cr were analyzed by the electron microprobe. According to their relatively low Nb and Cr contents, source anatase and rutile must have come from meta-mafic rocks. Trace elements of the associated ilmenite show relatively high MnO and low MgO contents, just in contrast to those of ilmenite in V-Ti-magnetite ores of magmatic origin. The protoliths of amphibolite wall rocks should be basalt and picrite-basalt. Pertochemical data suggest that the tectonic setting of these rocks belongs to an island arc or a transitional belt between the island arc and oceanic ridge. Silicon isotope study shows that δ30Si values of different anatase ores, quartzite, and schist in this deposit are 0.1‰ to –0.9‰, similar to those of marine hydrothermal exhalative sedimentary deposits. All of these geological and geochemical characteristics of the ore deposit suggest that the anatase ores and amphibolite are products of submarine basic volcanism. The ores had chemical precipitation features, but were later subjected to regional intermediate (or somewhat lower) grade metamorphism (1158 Ma). Rutile was formed mainly in the process of this metamorphism. The ore belt locally underwent hydrothermal modification during the emplacement of Late Yanshanian granite (118?Ma).  相似文献   

10.
拉拉铁氧化物-铜-金-钼-稀土矿床的成矿年龄一直悬而未决.文章采用辉钼矿Re-Os同位素方法,首次对该矿床的形成年龄进行了直接测定.4个样品的测定结果为:928(±1)~1 005(±1) Ma.这一结果与矿床的地质事实相吻合,因此它代表了拉拉矿床的成矿时代.根据这一年龄数据与赋矿围岩河口群的变质年龄相一致等证据,初步提出拉拉矿床为变质热液成因.此外拉拉矿床的矿化时代与Rodinia泛大陆拼贴的时限相当,这表明Rodinia泛大陆拼贴事件对扬子地块的成矿作用产生了深刻的影响.  相似文献   

11.
Located in the western part of the Min–Li metallogenic belt within the western Qinling Mountains, the Zhaishang gold deposit is a giant Carlin-like disseminated gold deposit discovered recently. The ore deposit is present both in rocks of low grade metamorphic Middle Devonian and Lower Permian clastic formation, which is composed of quartz sandstone, siltstone, calcareous slate and argillaceous limestone. Gold mineralization is strictly controlled by a fault zone. Minerals in ores are quite complex and consist of sulfides, sulfosalt, oxides, sulfate, carbonate, tungstate, telluride, native metals, and polymetallic alloys. The diversity of mineral in the ores and the existence of microscopic visible native gold constitute the outstanding features of the gold deposit.We believe that the mineral source of the ore deposit has a close connection with the host rocks, because all samples show the light of the REE distribution patterns. The S, C, Pb, H and O isotopic compositions show that the ore-forming elements were mainly derived from the country rocks, the underlying rocks, and partially deep sources. Data obtained suggest that the ore-forming fluids were derived predominantly from an active meteoric groundwater system. Mineralization and related alteration have features of a low water/rock ratio. Ore-forming temperatures are estimated to have been in the range from 120 to 240 °C. The dissolution of ferruginous limestone in the host rocks and the sulfidation of the dissolved iron by H2S introduced by ore fluids constituted not only the most important depositional mechanisms for the existence of microscopic visible gold grains but also favorable conditions for gold enrichment in the Zhaishang gold deposit.  相似文献   

12.
小柳沟铜钨矿区矿化特征及找矿方向   总被引:4,自引:0,他引:4       下载免费PDF全文
周廷贵  周继强  刘芳 《地质找矿论丛》2001,16(4):252-256,261
小柳沟铜钨矿赋存于长城系朱龙关群中,其中以赋存于云母角闪片岩,夕卡岩,夕卡岩化灰岩中的似层状矿化为主,矿体规模大,品位高,矿物成分复杂,围岩蚀变发育,其次为赋存于岩体接触带的夕卡岩型似层状,透镜状矿体,矿体规模较大,但品位低,矿石成分简单,围岩蚀变较发育,另外还有赋存于石英网脉带中的脉状矿体,矿体规模小,品位较低,矿石成分简单,围岩蚀变较发育。根据对矿区控矿条件及矿化富集规律的研究,今后该矿区找矿靶区为:小柳沟铜钨矿区西矿段西部及北部,北矿段及东矿段中的云母闪片岩,灰岩及Ⅰ,Ⅱ级重砂异常分布区,隐伏花岗岩体及地表花岗岩枝与围岩的接触带,石英网脉带脉。  相似文献   

13.
大横路式钴(铜)矿床地质特征及成因探讨   总被引:6,自引:1,他引:5  
大横路式钴(铜)矿床产于辽吉古元古代裂谷增生地体内,是国内新近发现的新类型钴矿床,其矿化特征独特、埋藏浅、规模大,具有较高潜在经济价值.矿床赋存于老岭群富硼、碳粘土岩夹硅质岩建造之中,矿体呈层状、似层状、鞍状产出,产状与围岩一致;矿石中金属矿物以硫化物、砷化物形式存在,钴以硫钴镍矿、辉砷钴矿、方钴矿和含钴黄铁矿等形式与黄铜矿、闪锌矿、方铅矿等共生.通过对矿床地质、地球化学特征和流体特征研究,证明该矿床既具有明显的热水沉积成因特征,又受后期变质热液的强烈叠加,属海底热水沉积-变质热液叠加改造型矿床.  相似文献   

14.
The Macraes gold-tungsten deposit occurs in a low-angle thrust system in biotite grade Otago Schist. Native gold, scheelite, pyrite and arsenopyrite are found in and adjacent to quartz veins and silicified schist of lenticular reef zones, where the thrust system cuts through graphitic pelitic schist. Mineralization is confined to a shear zone, up to 80 m thick, which is closely sub-parallel to the regional schistosity. Chemical alteration is dominated by silicification, with some addition of Cr and depletion of Sr and Ba. Alteration extends only about 5 m from major veins. Oxygen becomes isotopically heavier away from veins due to temperature decrease as hot fluids penetrated into cooler (250°C?) rock. Graphite within the shear zone rocks has reflectance of 6–7% (in oil), similar to graphite in medium-high grade Otago Schist, and is presumed to be metamorphic in origin. This graphite has acted as a reducing agent to cause precipitation of gold where the thrust system, acting as a conduit for metamorphic fluids, intersects the graphitic schist. The metals were derived from the underlying schist pile which may include an over-thrust oceanic assemblage containing metal-enriched horizons.  相似文献   

15.
The Macraes mine is hosted in an orogenic (mesothermal) gold deposit in metasedimentary rocks of the Otago Schist belt. Much gold occurs within altered schist with minimal silica-addition, and this study focuses on altered schist ore types. The unmineralized host schists are chemically and mineralogically uniform in composition, but include two end-member rock types: feldspathic schist and micaceous schist. Both rock types have undergone hydrothermal alteration along a shallow-dipping foliation-parallel shear zone, but their different rheological properties have affected the style of mineralisation. Micaceous schist has been extensively recrystallized and hydrothermally altered during ductile deformation, to form ores characterized by abundant, disseminated millimetre-scale pyrite cubes (typically 1–2 wt% S) and minor silicification. The earliest pyrite contained Ni and/or As in solid solution and no gold was imaged in these pyrites or later arsenopyrite grains. The ore type is refractory and gold recovery by cyanide leaching is less than 50%, with lowest recovery in rocks that have been less affected by later brittle deformation. In contrast, hydrothermally altered feldspathic schist is characterized by mineralised black microshears and veinlets formed during shear-zone related brittle deformation. Microsheared ore has relatively low sulphur content (<0.7 wt%) and muscovite has been illitised during hydrothermal alteration. Pyrite and arsenopyrite in microshears are fractured and deformed, and contain 1–10 m blebs of gold. Later pyrite veinlets also contain micron- to submicron-scale inclusions of sphalerite, chalcopyrite, galena, and gold (10 microns). Gold in microsheared ore is more readily recoverable than in the refractory ore, although encapsulation of the fine gold grains inhibits cyanidation. Both microsheared ore and disseminated pyritic ore pass laterally into mineralised black shears, which contain hydrothermal graphite and late-stage cataclastic sulphides. This black, sheared ore releases gold readily, but the gold is then adsorbed on to gangue minerals (preg-robbed) and net cyanidation recovery can be less than 50%. Hence, low gold recovery during cyanidation results from (1) poor liberation of gold encapsulated in microcrystalline quartz and unfractured sulphide grains, and (2) preg-robbing of liberated gold during cyanidation. Introduction of pressure-oxidation of ore prior to cynidation has mitigated these issues.  相似文献   

16.
阿万达金矿位于新疆阿克苏市拜城县, 属西南天山造山带, 是一新发现的中型金矿床。在简要总结矿床地质特征的基础上, 通过流体包裹体显微测温和毒砂地温计研究, 详尽地探讨了阿万达金矿成矿流体的演化。研究表明:矿化石英中存在含CO2的三相和气液两相两类包裹体, 且以后者居多;气液两相包裹体均一温度为188~380℃, 呈双峰式分布, 盐度(w(NaCl))为6.9%~20.7%;含CO2包裹体的最终均一温度为238~347℃, 盐度为2.8%~7.0%。综合分析认为, 阿万达金矿成矿流体经历了由高温向中低温两个成矿阶段的演化过程。高温阶段, 成矿流体均一温度为270~380℃, 捕获温度为345~420℃, 估算的捕获压力为74~142 MPa(按静岩压力估算成矿深度为2.8~5.4 km), 以中低盐度H2O-CO2-NaCl体系为主, 形成高温毒砂及其他硫化物;中低温阶段, 均一温度为188~270℃, 捕获温度为270~304℃, 捕获压力为52~104 MPa, 成矿流体成分向中低盐度H2O-NaCl体系转变, 沉淀出低温毒砂及其他硫化物。综合阿万达金矿的矿床地质特征以及流体演化特点, 认为其成因类型属中浅成造山型金矿。  相似文献   

17.
The Xitieshan deposit (~ 64 Mt at 4.86% Zn, 4.16% Pb, 58 g/t Ag, and 0.68 g/t Au) is hosted by the Middle to Late Ordovician Tanjianshan Group of the North Qaidam tectonic metallogenic belt, NW China. This belt is characterized by island arc volcanic, ultra-high pressure (UHP) metamorphic and ophiolitic rocks. The Tanjianshan Group constitutes a succession of metamorphosed bimodal volcanic and sedimentary rocks, which are interpreted to have formed on the margin of a back-arc ocean basin between the Qaidam block and the Qilian block.Four stratigraphic units are identified within the Ordovician Tanjianshan Group. From northeast to southwest they are: 1) unit a, or the lower volcanic-sedimentary rocks, comprising bimodal volcanic rocks (unit a-1) and sedimentary rocks (unit a-2) ranging from carbonates to black carbonaceous schist; 2) unit b, or intermediate-mafic volcaniclastic rocks, characterized by intermediate to mafic volcaniclastic rocks intercalated with lamellar carbonaceous schist and minor marble lenses; 3) unit c, a purplish red sandy conglomerate that unconformably overlies unit b, representing the product of the foreland basin sedimentation during the Early Silurian; 4) unit d, or mafic volcanic rocks, from base to up, comprising the lower mafic volcaniclastic rocks (unit d-1), middle clastic sedimentary rocks (unit d-2), upper mafic volcaniclastic rocks (unit d-3), and uppermost mafic volcanic rocks (unit d-4). Unit a-2 hosts most of the massive sulfides whereas unit b contains subordinate amounts.The massive stratiform lenses constitute most of the Xitieshan deposit with significant amount of semi-massive and irregularly-shaped sulfides and minor amounts in stringer veins. Pyrite, galena and sphalerite are the dominant sulfide minerals, with subordinate pyrrhotite and chalcopyrite. Quartz is a dominant gangue mineral. Sericite, quartz, chlorite, and carbonate alteration of host rocks accompanies the mineralization.U-Pb zircon geochronology yields three ages of 454 Ma, 452 Ma and 451 Ma for the footwall felsic volcanic rocks in unit a-1, sedimentary host rocks in unit a-2 and hanging-wall unit b, respectively. The Xitieshan deposit is considered to be coeval with the sedimentation of unit a-2 and unit b of the Tanjianshan Group. The Xitieshan deposit has been intensely deformed during two phases (main ductile shear and minor ductile-brittle deformation). The main ductile shear deformation controls the general strike of the ore zones, whereas minor deformation controls the internal geometry of the ore bodies. 40Ar-39Ar age of muscovite from mylonitized granitic gneisses in the ductile shear zone is ~ 399 Ma, which is interpreted to date the Xitieshan ductile shear zone, suggesting that Early Devonian metamorphism and deformation post-dated the Tanjianshan Group.The Xitieshan deposit has many features similar to that of the Bathurst district of Canada, the Iberian Pyrite Belt of Spain, the Wolverine volcanogenic massive sulfide deposit in Canada. Based on its tectonic setting, host-rock types, local geologic setting, metal grades, geochronology, temperatures and salinities of mineralizing fluid and source of sulfur, the Xitieshan deposit has features similar to sedimentary exhalative (SEDEX) and VMS deposits and is similar to volcanic and sediment-hosted massive sulfide (VSHMS) deposits.  相似文献   

18.
The Hyde-Macraes Shear Zone in southern New Zealand contains the circa 10 million ounce Macraes gold deposit, one of the larger Phanerozoic orogenic gold deposits discovered to date globally. Approximately 50% of this 10 million ounce resource is hosted by 5 major ore shoots up to 400 m wide and 1500 m long in the Frasers area at the southern end of the mine. Higher grade (>1.5 g/t Au) ore shoots are located along and immediately below the Hangingwall Shear, the principal strand of the Hyde-Macraes Shear Zone at the Frasers deposit. They typically trend parallel to the intersection of the shear and foliation in the underlying schist, commonly where the foliation dips more steeply that the overlying Hangingwall Shear. Especially thick zones of higher grade mineralised rock are located between the Hangingwall Shear and underlying second order splay shears whose position correlates with minor right-hand bends in the strike of the overlying Hangingwall Shear. Lower grade (<1.2 g/t Au), but economically significant, ore shoots are located within mineralised schists below the Hangingwall Shear. Outer margins of these lower grade ore shoots are generally parallel to the strike of the foliation in the host schist. They are most extensive where open disharmonic folding has resulted in the strike of the foliation diverging from that of the overlying Hangingwall Shear. No correlation exists between the position of any ore shoots and gently dipping jogs in the Hangingwall Shear, despite mineralisation occurring during reverse movement on the Hyde-Macraes Shear Zone. Instead the angular relationship between various strands of the Hyde-Macraes Shear Zone at Frasers and foliation in underlying schists is the most consistent structural feature likely to predict the location, extent, and orientation of ore shoots within the Frasers segment of the Hyde-Macraes Shear Zone.  相似文献   

19.
莫托萨拉铁锰矿床位于西天山阿吾拉勒成矿带东端,研究程度相对薄弱,在矿床成因方面存在热水沉积、沉积-热液改造、胶体化学沉积等争论。本文详细研究了莫托萨拉最上层锰矿及其围岩的矿物组成、结构构造和地球化学特征,并综合前人资料对整个铁锰矿床的成因做了进一步探讨。本研究首次在矿区发现了热液长石岩,其主要由钠长石、钾长石以及少量重晶石、霓石、锌铁黄长石等矿物组成,类似于"白烟型"热水沉积岩。莫托萨拉最上层锰矿主要由锰橄榄石、褐锰矿、红硅锰矿、磁锰铁矿以及少量重晶石、方铁锰矿等矿物组成,发育有典型的热水内碎屑结构,指示其沉积于海底热液喷流口附近。该层锰矿的Al/(Al+Fe+Mn)值很低(0~0.02)、Si/Al值较高(7.9~10.9)、Fe/Ti值很高(428~1353),通过UCC标准化后发现明显富集Zn、Ba、Pb等元素,而Co、Ni、Cu等元素未见富集,以上地球化学特征与现代海底热液成因铁锰沉积物一致。在Fe/Ti-Al/(Al+Fe+Mn)、Si O2-Al2O3、10×(Co+Ni+Cu)-Fe-Mn、100×(Zr+Ce+Y)-15×(Cu+Ni)-(Fe+Mn)/4等判别图中,莫托萨拉的锰矿层和铁矿层样品均落在海底热液沉积区。锰矿层和铁矿层的稀土元素经PAAS标准化后具有明显的Ce负异常、Eu正异常和Y正异常,与现代海底热液成因铁锰沉积物的稀土配分模式非常相似。综合分析本次研究的矿物学、岩石学、地球化学特征以及前人资料,本文认为莫托萨拉铁锰矿床为海相热水沉积成因,成矿与同期海底火山的间歇性活动密切相关,海底热液的化学组分、温度高低和活动强弱都具有明显的脉动性。莫托萨拉矿区铁锰共存但各自独立成矿,且铁锰分离程度较高,这在显生宙沉积型锰矿中独具特色。鉴于前人曾报道莫托萨拉铁矿石中存在菌藻类微生物化石,我们推测,该矿床的铁锰分离过程除了受控于沉积环境的氧化还原条件变化外,微生物的选择性氧化沉淀可能也发挥了重要作用,值得开展深入研究。  相似文献   

20.
滇东南喷流沉积块状硫化物特征与矿床成因   总被引:41,自引:8,他引:33  
周建平  徐克勤 《矿物学报》1998,18(2):158-168,T002
滇东南一些著名的大型-超大型锡多金属矿床,如个旧锡矿和都龙锡矿,白牛厂大型银,锡多金属矿床下部均有燕山期花岗岩发育,因此,个旧和都龙锡多金属矿床大多数人认为是岩浆热液矿床。笔者对上述三个矿床的矿石矿物组构、成分以及它们的共生组合关系进行了系统研究,发现了大量海底喷流沉积结构构造,值得一提的是在岩体接触带附近的块状硫化物矿体中发现了缅状结构和丝状客形虫等证据,而这些矿体曾被认为是典型的岩浆热液成因,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号