首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Recent seismicity in and around the Gargano Promontory, an uplifted portion of the Southern Adriatic Foreland domain, indicates active E–W strike-slip faulting in a region that has also been struck by large historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two decades show that the pattern of tectonic deformation along the E–W-trending segment of the Gondola Fault Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the Eocene–Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene. Nevertheless, many investigators emphasised the genetic relationships and physical continuity between the Mattinata Fault, a positively active tectonic feature, and the Gondola Fault Zone. The seismotectonic potential of the system formed by these two faults has never been investigated in detail. Recent investigations of Quaternary sedimentary successions on the Adriatic shelf, by means of very high-resolution seismic–stratigraphic data, have led to the identification of fold growth and fault propagation in Middle–Upper Pleistocene and Holocene units. The inferred pattern of gentle folding and shallow faulting indicates that sediments deposited during the past ca. 450 ka were recurrently deformed along the E–W branch of the Gondola Fault Zone.We performed a detailed reconstruction and kinematic interpretation of the most recent deformation observed along the Gondola Fault Zone and interpret it in the broader context of the seismotectonic setting of the Southern Apennines-foreland region. We hypothesise that the entire 180 km-long Molise–Gondola Shear Zone is presently active and speculate that also its offshore portion, the Gondola Fault Zone, has a seismogenic behaviour.  相似文献   

2.
晚更新世以来渤海南部海域断裂活动性   总被引:2,自引:0,他引:2  
渤海在新生代经历2次强烈的沉降阶段,海域内各断裂活动对渤海盆地的演化发育产生重要影响.以渤海40°N以南海域单道地震资料为基础,对研究区内断裂活动性进行研究,结果表明:晚更新世(128 ka BP)以来,研究区内断裂活动性很强,以郯庐断裂渤海段最强,其平均垂向活动率大于0.05 mm/a;此期间渤海经历2个构造活跃期,...  相似文献   

3.
Tectonic elements controlling the evolution of the Gulf of Saros have been studied based upon the high-resolution shallow seismic data integrated with the geological field observations. Evolution of the Gulf of Saros started in the Middle to Late Miocene due to the NW–SE compression caused by the counterclockwise movement of the Thrace and Biga peninsulas along the Thrace Fault Zone. Hence, the North Anatolian Fault Zone is not an active structural element responsible for the starting of the evolution of the Gulf of Saros. The compression caused by the rotational movement was compensated by tectonic escape along the pre-existing Ganos Fault System. Two most significant controllers of this deformation are the sinistral Ganos Fault and the dextral northern Saros Fault Zone both extending along the Gulf of Saros. The most important evidences of this movement are the left- and right-oriented shear deformations, which are correlated with structural elements, observed on the land and on the high-resolution shallow seismic records at the sea. Another important line of evidence supporting the evolution of this deformation is that the transgression started in the early-Late Miocene and turned, as a result of regional uplift, into a regression on the Gelibolu Peninsula during the Turolian and in the north of the Saros Trough during the Early Pliocene. The deformation on the Gelibolu Peninsula continued effectively until the Pleistocene. Taking into account the fact that this deformation affected the Late Pleistocene units of the Marmara Formation, the graben formation of the Gulf of Saros is interpreted as a Recent event. However, at least a small amount of compression on the Gelibolu Peninsula is observed. It is also evident that compression ceased at the northern shelf area of the Gulf of Saros.  相似文献   

4.
山东郯城麦坡被命名为典型地震活动断层遗址,其最醒目的标志是郯庐断裂带主干断层(F2)东盘的紫灰色下白垩统逆冲到断层西盘的红棕色第四系之上且界线截然。野外调查和试验分析表明,郯城麦坡第四系于泉组中发育液化砂涌管、液化砂脉、震裂缝充填构造和同沉积断层等地震引发的软沉积物变形构造——地震事件记录。根据软沉积物变形构造的砂质黏土光释光测年分析,推断这些软沉积物变形构造所记录的地震事件属郯庐断裂带主干断层F2在中更新世晚期发生的强构造与地震活动。这些地震事件记录为研究郯庐断裂带新构造运动与地震活动提供了新资料,也丰富了该地震活动断层遗址的内涵。  相似文献   

5.
The September 24, 1999 Ahram Earthquake in southwestern Iran was moderate in energy (M = 5.0–5.5 from different sources) and did not entail significant destruction and casualities. The tectonic position of the source zone, surficial seismic dislocations, and results of macroseismic and seismological study of this seismic event in the junction zone of the Zagros Fold System and the piedmont plain are described in the paper, including data on rejuvenated ancient ruptures exposed in two trenches excavated across the strike of the regional Kazerun-Borazjan Fault. One of the trenches was driven a few months before and the other a year after this seismic event. The conclusion is drawn that new deformations in the Quaternary near-surface sediments observed at the walls of both trenches may be regarded as unusual seismic ruptures of the Ahram earthquake. These ruptures, described as proved primary seismic dislocations of such a moderate seismic event, are a unique phenomenon in the world seismotectonic practice. The localization of the earthquake source zone in the Kazerun-Borazjan Fault Zone with complex kinematics makes it possible to study the internal structure of one of the most important tectonic lines of the Zagros Fold Region.  相似文献   

6.
沂沭断裂带纵贯山东省中部,属郯庐断裂带中段。在沂沭断裂带及其近区新元古代—新生代的沉积地层中,到目前,已识别出25个地震事件层位。这些地震事件层位的名称取自不同年代或年龄的含地震记录的岩石地层。大多数地震记录是震积岩,少部分为震火山岩,它们的时空分布支持该断裂带生成—活动与发展历史分2个阶段: 古郯庐断裂带阶段(新元古代—古生代)和中—新生代阶段。新元古代初鲁中至苏皖北部NNE向韧性剪切带的形成,沟通了秦岭大别与苏鲁洋间的NEE走向的转换断层,可能是沂沭断裂带或古郯庐断裂带的成因机制。在纵向上,古郯庐断裂带阶段形成了8个地震事件层位,其中5个地震事件层位较密集地分布于南华系至中下寒武统;中—新生代阶段形成了17个地震事件层位,其中12个层位较密集的分布于白垩系—古近系。因此,南华纪—早中寒武世、白垩纪—古近纪分别为2个发展阶段的强地震事件频繁发生时段。在这2个发展阶段,该断裂带地震活动的动力来源不同: 古郯庐断裂带阶段主要源于华北与华南板块的相向运动与碰撞;中—新生代阶段主要源于太平洋板块向欧亚大陆板块下俯冲。在横向上,有15个(占60%)地震事件层位分布在此断裂带内或由该断裂带内向两侧延伸,这体现了沂沭断裂带一直是研究区内发震构造的主体。所有地震事件地层分布于该断裂带纵中轴线两侧150~180,km以内的同沉积盆地,这证明该深大断裂带的两侧近区是强构造地震活动区。作者关于地震事件层位的时空分布的论述和图解,展示了该断裂带自形成以来的地震作用的过程与历史,清晰地勾绘出了这条长期活动地震带的影响范围,这不仅对分析此类深大活动断裂带及其附近由地震引发的软沉积物变形与地震作用具有重要意义,而且对评价此类地震带对地表和建筑物的地震破坏效应也具有重要意义。  相似文献   

7.
The Bekten Fault is 20-km long N55°E trending and oblique-slip fault in the dextral strike-slip fault zone. The fault is extending sub-parallel between Yenice-Gönen and Sar?köy faults, which forms the southern branch of North Anatolian Fault Zone in Southern Marmara Region. Tectonomorphological structures indicative of the recent fault displacements such as elongated ridges and offset creeks observed along the fault. In this study, we investigated palaeoseismic activities of the Bekten Fault by trenching surveys, which were carried out over a topographic saddle. The trench exposed the fault and the trench stratigraphy revealed repeated earthquake surface rupture events which resulted in displacements of late Pleistocene and Holocene deposits. According to radiocarbon ages obtained from samples taken from the event horizons in the stratigraphy, it was determined that at least three earthquakes resulting in surface rupture generated from the Bekten Fault within last ~1300 years. Based on the palaeoseismological data, the Bekten Fault displays non-characteristic earthquake behaviour and has not produced any earthquake associated with surface rupture for about the last 400 years. Additionally, the data will provide information for the role of small fault segments play except for the major structures in strike-slip fault systems.  相似文献   

8.
We present a marine palaeoseismology analysis of a dense network of very high resolution seismic profiles along the Gondola Fault Zone (GFZ), a right-lateral, E–W-striking, active fault system in the Adriatic foreland. This case-study aims to show how time and space variations in the activity of a dominantly right-lateral fault system can be assessed using the vertical component of slip. The GFZ has been investigated for a length of 50 km. It includes two parallel subvertical fault sets and two main anticlines. The late Middle Pleistocene to Holocene vertical component of displacement along the fault is bell-shaped, suggesting that in the long-term the fault zone acts as a single, kinematically coherent structure. Slip rates are 0–0.18 mm a−1 and vary temporally on individual segments. This variability is consistent with a model in which individual fault segments rupture independently during earthquakes with magnitudes up to 6.4 and 1.3–1.8 ka recurrence intervals.  相似文献   

9.
A ~400 km long deep crustal reflection seismic survey was acquired in central Victoria, Australia, in 2006. It has provided information on crustal architecture across the western Lachlan Orogen and has greatly added to the understanding of the tectonic evolution. The east-dipping Moyston Fault is confirmed as the suture between the Delamerian and western Lachlan Orogens, and is shown to extend down to the Moho. The Avoca Fault, the boundary between the Stawell and Bendigo Zones, is a west-dipping listric reverse fault that intersects the Moyston Fault at a depth of about 22 km, forming a V-shaped geometry. Both the Stawell and Bendigo Zones can be divided broadly into a lower crustal region of interlayered and imbricated metavolcanic and metasedimentary rocks and an upper crustal region of tightly folded metasedimentary rocks. The Stawell Zone was probably part of a Cambrian accretionary system along the eastern Gondwanaland margin, and mafic rocks may have been partly consumed by Cambrian subduction. Much of the Early Cambrian oceanic crust beneath the Bendigo Zone was not subducted, and is preserved as a crustal-scale imbricate thrust stack. The seismic data have shown that a thin-skinned structural model appears to be valid for much of the Melbourne Zone, whereas the Stawell and Bendigo Zones have a thick-skinned structural style. Internal faults in the Stawell and Bendigo Zones are mostly west-dipping listric faults, which extend from the surface to near the base of the crust. The Heathcote Fault Zone, the boundary between the Bendigo and Melbourne Zones, extends to at least 20 km, and possibly to the Moho. A striking feature in the seismic data is the markedly different seismic character of the mid to lower crust of the Melbourne Zone. The deep seismic reflection data for the Melbourne Zone have revealed a multilayered crustal structure that supports the Selwyn Block model.  相似文献   

10.
阿尔金断裂系东北段阳关断裂的晚第四纪活动性与强震危险性关系到敦煌地区及相关文物古迹的防震减灾问题.基于高分辨率卫星影像对阳关断裂几何展布特征进行解译,采用差分GPS、无人机航空摄影测量方法、古地震探槽方法以及OSL测年方法对两个研究点进行了详细研究,对其定量活动参数进行了初步限定.结果显示,阳关断裂东段运动形式主要表现为挤压逆冲,最新的一次地震事件可能发生在距今43.5~12.1 ka之间,表明阳关断裂东段至少在晚更新世以来有过活动,并且具有发生Mw6.6强震的潜能及危险性.如果发生类似强度的地震,敦煌主城区的烈度至少在Ⅵ以上,阳关土遗址地区则会达到Ⅸ.因此,阳关断裂应该是该区防震减灾重点关注的发震断层之一.   相似文献   

11.
The Mt. Angel Fault is likely one of the most active faults near the Portland metropolitan area, and was probably associated with the 1993 Scotts Mills earthquake. SH-wave seismic techniques used to image the Mt. Angel Fault suggest that the fault offsets late Pleistocene gravel (22 to 34 ka) at several locations. Within the study area, displacement of the late Pleistocene gravel along the strike of the Mt. Angel Fault increases from no obvious displacement on the northwest to approximately 18 m on the southeast. This trend of increasing offset along the strike of the fault is paralleled by topographic and geomorphic trends. A reconnaissance geologic investigation at an anomalous bend in the Pudding River near the projected trace of the Mt. Angel Fault revealed potential tectonic deformation in sediments younger than the late Pleistocene gravel imaged by SH-wave data. The results of this study have contributed to the paleoseismic record of the Mt. Angel Fault, laid the groundwork for future geologic investigations along the Pudding River, and determined potential sites for future paleoseismic trenching investigations.  相似文献   

12.
On the basis of the multi-channel seismic data and the other data, using 2DMove software, the tectonic evolution in three seismic profiles was restored since Pliocene. The tectonic restoration results show that: (1) the initial active center lay in the west slope and then was transferred to east and south via trough center during the evolution process; (2) several main normal faults controlled the evolution of the southern Okinawa Trough; (3) since Late Pliocene, the southern Okinawa Trough has experienced two spreading stages. The early is depression in Early-Middle Pleistocene and the late is back-arc spreading in Late Pleistocene and Holocene, which is in primary oceanic crust spreading stage.  相似文献   

13.
研究目的】晋中盆地位于汾渭断陷盆地带的中部,新生代最大沉积厚度超过3800 m,建立晋中盆地精确地层年代框架和高分辨率沉积层序对于理解汾渭断陷盆地带的演化、华北地区气候变化具有重要意义。【研究方法】本文对晋中盆地东北部晚新生代标准孔ZK01(钻孔深度870.5 m)岩心开展了年代学和沉积学研究。【研究结果】将ZK01孔揭示的松散沉积物分为6个岩性组。首次通过磁性地层学研究,划分出13个正极性时段和12个负极性时段,建立了ZK01孔地层年代框架。晋中盆地新生代沉积物底部最老年龄约8.1 Ma,将晋中盆地活动的起始时间从前人一般认为的上新世初期,确定为中新世晚期,提前了约3 Ma。区内晚新生代地层划分为新近系中新统灞河阶(N14)和保德阶(N15),上新统高庄阶(N21)和麻则沟阶(N222),第四系下更新统泥河湾阶(Qp1),中、上更新统和全新统。【结论】构造活动与气候变化是盆地沉积环境的主要控制因素,共同导致了上新世早期和早更新世中晚期的两次湖泊大规模发育。全新世时期,早中期即先秦(约2.5 ka以前),盆地中仍是河湖共存阶段;晚期(2.5 ka以来),出现湖消河长的局面,直至明、清时期湖泊全部消失,气候变化和人类活动影响是盆地中湖泊最终消失的主要原因。创新点:首次通过磁性地层学将晋中盆地发育时间确定为中新世晚期约8.1 Ma;盆地的湖泊发育早期主要受构造和气候控制,全新世以来气候变化和人类活动造成湖泊最终消亡。  相似文献   

14.
We have identified a 50-km-long active fault scarp, called herewith the Lourdes Fault, between the city of Lourdes and Arette village in the French Pyrénées. This region was affected by large and moderate earthquakes in 1660 (Io = VIII–IX, MSK 64,), in 1750 (Io = VIII, MSK 64) and in 1967 (Md = 5.3, Io = VIII, MSK 64). Most earthquakes in this area are shallow and the few available focal mechanism solutions do not indicate a consistent pattern of active deformation. Field investigations in active tectonics indicate an East–West trending and up to 50-m-high fault scarp, in average, made of 3 contiguous linear fault sub-segments. To the north, the fault controls Quaternary basins and shows uplifted and tilted alluvial terraces. Deviated and abandoned stream channels of the southern block are likely due to the successive uplift of the northern block of the fault. Paleoseismic investigations coupled with geomorphic studies, georadar prospecting and trenching along the fault scarp illustrate the cumulative fault movements during the late Holocene. Trenches exhibit shear contacts with flexural slip faulting and thrust ruptures showing deformed alluvial units in buried channels. 14C dating of alluvial and colluvial units indicates a consistent age bracket from two different trenches and shows that the most recent fault movements occurred between 4221 BC and 2918 BC. Fault parameters and paleoseismic results imply that the Lourdes Fault and related sub-segments may produce a MW 6.5 to 7.1 earthquake. Fault parameters imply that the Lourdes Fault segment corresponds to a major seismic source in the western Pyrénées that may generate earthquakes possibly larger than the 1660 historical event.  相似文献   

15.
黄河源区第四纪地质研究的新进展   总被引:8,自引:1,他引:8  
通过对黄河源区的钻孔、自然露头的研究, 建立了黄河源区的第四纪地层层序。第四纪地层可划分为下更新统、中更新统、上更新统和全新统。下更新统为河湖相沉积; 中更新统主要有湖积物、冰碛物和冰水沉积物; 上更新统主要有湖积物、冰碛物、冰水沉积物、洪积物和河流沉积物; 全新统主要由河流沉积物、洪积物和湖积物构成。黄河源区的冰期可划分为3期, 即末次冰期、倒数第二次冰期、倒数第三次冰期, 末次冰期又可分为2个冰阶。黄河源区的湖泊演化可划分为早更新世、中更新世和晚更新世—全新世3个阶段: 早更新世的湖泊范围小; 中更新世的湖泊范围明显扩大, 在位置上也较早更新世的湖泊南移; 晚更新世的湖泊经历了两次的扩张—收缩变化, 到了全新世, 除现今还发育的几个湖泊外, 大多数地区的湖水已退出, 基本上转变为河流环境。在晚更新世末期到全新世初期, 封闭黄河源区的多石峡被切开, 湖水外泄, 现今的黄河形成了, 同时发生了袭夺长江水系的水流。  相似文献   

16.
长江河口地区晚更新世晚期以来沉积环境的变迁   总被引:5,自引:0,他引:5       下载免费PDF全文
郭蓄民 《地质科学》1983,(4):402-408
本文所述长江河口地区,指河口附近的陆上部分,包括北部的三角洲平原,东部的滨海平原及西南部的冲积一湖积平原。全区除局部见有一些基岩山体以外,绝大部分为第四系覆盖区。整个第四系岩相层序比较复杂,反映沉积环境有过多次更替。  相似文献   

17.
以54个浅层新钻孔和多个野外露头为研究对象,综合沉积物粒度、薄片、微体古生物、孢粉、14C测年及静力触探等资料,分析了鲁北平原晚第四纪的地层结构和沉积类型,总结了晚更新世晚期以来的沉积演化。研究表明,末次冰期盛冰期到冰后期,受地势、气候条件控制的黄河河道迁移和海水进退是影响地层结构和沉积特征的主要因素,南北地层结构差异明显,发育古河道、湖沼、黄土、三角洲、潮坪和滨浅海等沉积类型,其中古河道分布面积最广,自下而上可划分为三期。晚更新世晚期至早全新世早期,受干冷气候影响,发育第Ⅰ期古河道,小清河以南沉积黄土层;早全新世晚期至中全新世,气候转暖导致海平面升高,沿海地区形成海侵层和三角洲,内陆地区继承性发育第Ⅱ期古河道和湖沼沉积;中全新世末期或晚全新世以来,受黄河泛滥影响,沉积第Ⅲ期古河道和现代黄河三角洲。地层结构和沉积物分布的研究对于分析地下水位的变化规律,以及选择合适的地震激发层等均有重要的指导意义。  相似文献   

18.
Northern Thessaly may represent an important seismic gap within the broader Aegean Region, with major faults bordering the ESE–WNW trending Late Pleistocene–Holocene Tyrnavos Basin. In order to obtain information about the characteristics of past earthquakes and improve our knowledge on the seismic potential of the investigated area, historical and archaeological observations are analysed and compared with the results of palaeoseismological trenches excavated across one of the major bordering structures, the Tyrnavos Fault. The former data clearly document (i) a strong seismic activity affecting the area during the last 2–3 ka and (ii) the occurrence of recent earthquakes not included in the seismic catalogues. Also, the sedimentological, structural and chronological data (TL, OSL and AMS) obtained from the palaeoseismological trenches indicate Late Pleistocene to Holocene morphogenic activity of the Tyrnavos Fault, characterised by vertical co-seismic displacements of 20–40 cm and possible return periods of a few thousands of years. Advantages and limitations in using historical and archaeoseismological data are discussed, as well as the problems arising from analysing low slip-rate faults.  相似文献   

19.
High-resolution seismic boomer profiles, with a vertical resolution of less than 1 m, together with piston cores and previous side-scan sonar data, are used to describe late Quaternary sedimentation on the Var deep-sea fan. Chronological control is provided by foram biostratigraphy and radiocarbon dating in cores, and is extended over the fan by seismic correlation. Regional erosional events correspond to the oxygen isotopic stage 2 and 6 glacial maxima. Cores and seismic data define a widespread surface sand layer that is correlated with prodelta failure in 1979 and subsequent submarine cable breaks. Numerical modelling constrains the character of this 1979 turbidity current. It originated from a relatively small slide on the upper prodelta that put sufficient material in suspension to form an accelerating turbidity current which eroded sand from the Var Canyon. The turbidity current was only 30 m thick on the Upper Valley, but experienced significant flow expansion in the Middle Valley to thicknesses of more than 120 m, where it spilled over the eastern Var Sedimentary Ridge at a velocity of about 2·5 m s?1. Other Holocene turbidity currents (with a recurrence interval of 1000 years) were somewhat muddier and thicker, but also deposited sand on the levees of the Middle Valley, and are inferred to have had a similar slide-related origin. Late Pleistocene turbidity currents deposited thick mud beds on the Var Sedimentary Ridge. The presence of sediment waves and the mean cross-flow slope inferred from levee asymmetry indicates that some of these flows were many hundreds of metres thick and flowed at velocities of about 0·35 m s?1. This contrast with Holocene turbidites suggests that a slide origin is unlikely. Estimated times for deposition of thick mud beds on the levees are many days to weeks. The Late Pleistocene flows may therefore result from hyperpycnal flow of glacial outwash in the Var River. The variation in the Late Pleistocene to Holocene turbidite sedimentation is controlled more by variations in sediment supply than by sea-level change.  相似文献   

20.
The Meuse River crosses the Feldbiss Fault Zone, one of the main border fault zones of the Roer Valley Graben in the southern part of the Netherlands. Uplift of the area south of the Feldbiss Fault Zone forced the Meuse River to incise and, as a result, a flight of terraces was formed. Faults of the Feldbiss Fault Zone have displaced the Middle and Late Pleistocene terrace deposits. In this study, an extensive geomorphological survey was carried out to locate the faults of the Feldbiss Fault Zone and to determine the displacement history of terrace deposits.The Feldbiss Fault Zone is characterized by an average displacement rate of 0.041–0.047 mm a−1 during the Late Pleistocene. Individual faults show an average displacement rate ranging between 0.010 and 0.034 mm a−1. The spatial variation in displacement rates along the individual faults reveals a system of overstepping faults. These normal faults developed by reactivation of Paleozoic strike-slip faults.As fault displacements at the bases of the younger terrace deposits are apparently similar to the tops of the adjacent older terrace, the age of these horizons is the same within thousands of years. This implies that the model of terrace development by rapid fluvial incision followed by slow aggradation does apply for this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号