首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In a previous study, a denitrification wall was constructed in a sand aquifer using sawdust as the carbon substrate. Ground water bypassed around this sawdust wall due to reduced hydraulic conductivity. We investigated potential reasons for this by testing two new walls and conducting laboratory studies. The first wall was constructed by mixing aquifer material in situ without substrate addition to investigate the effects of the construction technique (mixed wall). A second, biochip wall, was constructed using coarse wood chips to determine the effect of size of the particles in the amendment on hydraulic conductivity. The aquifer hydraulic conductivity was 35.4 m/d, while in the mixed wall it was 2.8 m/d and in the biochip wall 3.4 m/d. This indicated that the mixing of the aquifer sands below the water table allowed the particles to re-sort themselves into a matrix with a significantly lower hydraulic conductivity than the process that originally formed the aquifer. The addition of a coarser substrate in the biochip wall significantly increased total porosity and decreased bulk density, but hydraulic conductivity remained low compared to the aquifer. Laboratory cores of aquifer sand mixed under dry and wet conditions mimicked the reduction in hydraulic conductivity observed in the field within the mixed wall. The addition of sawdust to the laboratory cores resulted in a significantly higher hydraulic conductivity when mixed dry compared to cores mixed wet. This reduction in the hydraulic conductivity of the sand/sawdust cores mixed under saturated conditions repeated what occurred in the field in the original sawdust wall. This indicated that laboratory investigations can be a useful tool to highlight potential reductions in field hydraulic conductivities that may occur when differing materials are mixed under field conditions.  相似文献   

2.
— A new method for characterising the detailed fracture geometry in sandstone cores is presented. This method is based on the impregnation of samples with coloured resin, without significant disturbance of the fractures. The fractures are made clearly visible by the resin, thus allowing the fracture geometry to be examined digitally. In order to model the bulk hydraulic conductivity, the samples are sectioned serially perpendicular to the flow direction. The hydraulic conductivity of individual sections is estimated by summing the contribution of the matrix and each fracture from the digital data. Finally, the hydraulic conductivity of the bulk sample is estimated by a harmonic average in series along the flow path. Results of this geometrical method are compared with actual physical conductivity values measured from fluid experiments carried out prior to sectioning. The predicted conductivity from the fracture geometry parameters (e.g., fracture aperture, fracture width, fracture length and fracture relative roughness all measured using an optical method) is in good agreement with the independent physical measurements, thereby validating the approach.  相似文献   

3.
Characterization of the hydraulic properties of fractures in chalk   总被引:3,自引:0,他引:3  
Nativ R  Adar E  Assaf L  Nygaard E 《Ground water》2003,41(4):532-543
  相似文献   

4.
Modeling unsaturated flow in porous media requires constitutive relations that describe the soil water retention and soil hydraulic conductivity as a function of either potential or water content. Often, the hydraulic parameters that describe these relations are directly measured on small soil cores, and many cores are needed to upscale to the entire heterogeneous flow field. An alternative to the forward upscaling method using small samples are inverse upscaling methods that incorporate soft data from geophysical measurements observed directly on the larger flow field. In this paper, we demonstrate that the hydraulic parameters can be obtained from cross borehole ground penetrating radar by measuring the first arrival travel time of electromagnetic waves (represented by raypaths) from stationary antennae during a constant flux infiltration experiment. The formulation and coupling of the hydrological and geophysical models rely on a constant velocity wetting front that causes critical refraction at the edge of the front as it passes by the antennae. During this critical refraction period, the slope of the first arrival data can be used to calculate (1) the wetting velocity and (2) the hydraulic conductivity of the wet (or saturated) soil. If the soil is undersaturated during infiltration, then an estimate of the saturated water content is needed before calculating the saturated hydraulic conductivity. The hydraulic conductivity value is then used in a nonlinear global optimization scheme to estimate the remaining two parameters of a Broadbridge and White soil.  相似文献   

5.
J. Lewis 《Ground water》2016,54(5):740-744
This technical note describes an effective and inexpensive field technique for measuring the saturated hydraulic conductivity of both undisturbed cores and repacked soil samples. The method requires no specialized equipment; everything that is required can be obtained in a hardware store. The method is a straightforward field implementation of the widely used falling‐head laboratory analysis directly derived from Darcy's law. As such, it sidesteps the need for empirical assumptions about soil texture and the relationship between saturated and unsaturated flow components which many permeameter‐based methods rely upon. The method is shown to produce results that are consistent with K values obtained elsewhere in the same homogeneous sand formation. Furthermore, the proposed method is useful for measuring hydraulic conductivity in drill cuttings obtained from direct push or auguring drill techniques, which cannot be done with any other field method. The range of hydraulic conductivity values that this test is appropriate for is on the order of 1E ? 7 m/s to 1E ? 3 m/s.  相似文献   

6.
A coring device has been developed to obtain long and minimally disturbed samples of saturated cohesionless sand and gravel. The coring device, which includes a wireline and piston, was developed specifically for use during hollow-stem auger drilling but it also offers possibilities for cable tool and rotary drilling. The core barrel consists of an inner liner made of inexpensive aluminum or plastic tubing, a piston for core recovery, and an exterior steel housing that protects the liner when the core barrel is driven into the aquifer. The core barrel, which is approximately 1.6m (5.6 feet) long, is advanced ahead of the lead auger by hammering at the surface on drill rods that are attached to the core barrel. After the sampler has been driven 1.5m (5 feet), the drill rods are detached and a wireline is used to hoist the core barrel, with the sample contained in the aluminum or plastic liner, to the surface. A vacuum developed by the piston during the coring operation provides good recovery of both the sediment and aquifer fluids contained in the sediment. In the field the sample tubes can be easily split along their length for on-site inspection or they can be capped with the pore water fluids inside and transported to the laboratory. The cores are 5cm (2 inches) in diameter by 1.5m (5 feet) long. Core acquisition to depths of 35m (115 feet), with a recovery greater than 90 percent, has become routine in University of Waterloo aquifer studies. A large diameter (12.7cm [5 inch]) version has also been used successfully. Nearly continuous sample sequences from sand and gravel aquifers have been obtained for studies of sedimentology, hydraulic conductivity, hydrogeochemistry and microbiology.  相似文献   

7.
The relationship between aquifer hydraulic conductivity and aquifer resistivity, either measured on the ground surface by vertical electrical sounding (VES) or from resistivity logs, or measured in core samples have been published for different types of aquifers in different locations. Generally, these relationships are empirical and semi-empirical, and confined in few locations. This relation has a positive correlation in some studies and negative in others. So far, there is no potentially physical law controlling this relation, which is not completely understood. Electric current follows the path of least resistance, as does water. Within and around pores, the model of conduction of electricity is ionic and thus the resistivity of the medium is controlled more by porosity and water conductivity than by the resistivity of the rock matrix. Thus, at the pore level, the electrical path is similar to the hydraulic path and the resistivity should reflect hydraulic conductivity. We tried in this paper to study the effect of degree of groundwater saturation in the relation between hydraulic conductivity and bulk resistivity via a simple numerical analysis of Archie’s second law and a simplified Kozeny-Carmen equation. The study reached three characteristic non-linear relations between hydraulic conductivity and resistivity depending on the degree of saturation. These relations are: (1) An inverse power relation in fully saturated aquifers and when porosity equals water saturation, (2) An inverse polynomial relation in unsaturated aquifers, when water saturation is higher than 50%, higher than porosity, and (3) A direct polynomial relation in poorly saturated aquifers, when water saturation is lower than 50%, lower than porosity. These results are supported by some field scale relationships.  相似文献   

8.
Jamal Asfahani 《水文研究》2007,21(21):2934-2943
Twenty‐nine Schlumberger electrical soundings were carried out in the Salamiyeh region in Syria using a maximum current electrode separation of 1 km. Three soundings were made at existing boreholes for comparison. Aquifer parameters of hydraulic conductivity and transmissivity were obtained by analysing pumping test data from the existing boreholes. An empirical relationship between hydraulic conductivity determined from the pumping test and both resistivity and thickness of the Neogene aquifer has been established for these boreholes in order to calculate the geophysical hydraulic conductivity. A close agreement has been obtained between the computed hydraulic conductivity and that determined from the pumping test. The relationship established has, therefore, been generalized in the study area in order to evaluate hydraulic conductivity and transmissivity at all the points where geoelectrical measurements have been carried out. This generalization allows one to derive maps of the hydraulic conductivity and transmissivity in the study area based on geoelectrical measurements. These maps are important in future modelling processes oriented towards better exploitation of the aquifers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Pore dilation, the compaction of humic acids on peat fibres due to the process of flocculation, causes the hydraulic conductivity of peat to increase with increasing pore water electrical conductivity. This is a reversible process and a reduction in the pore water conductivity produces a decrease in the hydraulic conductivity due to the constriction of pores. We verify how this dilation and constriction of pores, resulting from the application of artificial pore water (primarily deionized water), affects laboratory measurements of the hydraulic conductivity of peat. Repeat measurements of the hydraulic conductivity were performed on samples of Sphagnum peat. It is shown that the application of deionized water during constant head permeameter tests causes a significant decrease in the hydraulic conductivity. Between tests, the hydraulic conductivity of the peat continues to decline without an associate decrease in the pore water electrical conductivity because of a lagged pore constriction effect. We suggest that the use of artificially high or low pore water electrical conductivities, during laboratory hydraulic conductivity measurements, is likely to lead to significant errors. Experimental protocols must, therefore, be revised to take better account of the pore water chemistry. The ionic concentrations of the natural pore fluid should be replicated during hydraulic conductivity tests, either by using pore fluid extracted from the study site or by artificially replicating the major ionic composition of the natural pore fluid. In addition, prior to the hydraulic conductivity measurements, peat samples should be flushed with this solution until the hydraulic conductivity stabilizes and the samples subsequently allowed to equilibrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Xunhong Chen 《水文研究》2011,25(2):278-287
Characterization of streambed hydraulic conductivity from the channel surface to a great depth below the channel surface can provide needed information for the determination of stream‐aquifer hydrologic connectedness, and it is also important to river restoration. However, knowledge on the streambed hydraulic conductivity for sediments 1 m below the channel surface is scarce. This study describes a method that was used to determine the distribution patterns of streambed hydraulic conductivity for sediments from channel surface to a depth of 15 m below. The method includes Geoprobe's direct‐push techniques and Permeameter tests. Direct‐push techniques were used to generate the electrical conductivity (EC) logs and to collect sequences of continuous sediment cores from river channels, as well as from the alluvial aquifer connected to the river. Permeameter tests on these sediment cores give the profiles of vertical hydraulic conductivity (Kv) of the channel sediments and the aquifer materials. This method was applied to produce Kv profiles for a streambed and an alluvial aquifer in the Platte River Valley of Nebraska, USA. Comparison and statistical analysis of the Kv profiles from the river channel and from the proximate alluvial aquifer indicates a special pattern of Kv in the channel sediments. This depth‐dependent pattern of Kv distribution for the channel sediments is considered to be produced by hyporheic processes. This Kv‐distribution pattern implied that the effect of hyporheic processes on streambed hydraulic conductivity can reach the sediments about 9 m below the channel surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Illman WA  Berg SJ  Yeh TC 《Ground water》2012,50(3):421-431
The main purpose of this paper was to compare three approaches for predicting solute transport. The approaches include: (1) an effective parameter/macrodispersion approach (Gelhar and Axness 1983); (2) a heterogeneous approach using ordinary kriging based on core samples; and (3) a heterogeneous approach based on hydraulic tomography. We conducted our comparison in a heterogeneous sandbox aquifer. The aquifer was first characterized by taking 48 core samples to obtain local-scale hydraulic conductivity (K). The spatial statistics of these K values were then used to calculate the effective parameters. These K values and their statistics were also used for kriging to obtain a heterogeneous K field. In parallel, we performed a hydraulic tomography survey using hydraulic tests conducted in a dipole fashion with the drawdown data analyzed using the sequential successive linear estimator code (Yeh and Liu 2000) to obtain a K distribution (or K tomogram). The effective parameters and the heterogeneous K fields from kriging and hydraulic tomography were used in forward simulations of a dipole conservative tracer test. The simulated and observed breakthrough curves and their temporal moments were compared. Results show an improvement in predictions of drawdown behavior and tracer transport when the K tomogram from hydraulic tomography was used. This suggests that the high-resolution prediction of solute transport is possible without collecting a large number of small-scale samples to estimate flow and transport properties that are costly to obtain at the field scale.  相似文献   

12.
Tracer experiments conducted in the laboratory on undisturbed core samples (<7.3-cm-diameter) have been a standard method for estimating hydraulic and transport properties of fractured till since the 1980s. This study assesses the relationship between visible fractures on the top and bottom of core samples and the resulting hydraulic and mass transport properties of the core. We hypothesized that more visible fractures would indicate the presence of a well-connected fracture network, leading to greater hydraulic conductivity (K) values and earlier chemical breakthrough times. To test this hypothesis, water flow and bromide (Br-) tracer experiments were performed on 10, 16-cm diameter, 16-cm-tall samples of fractured Dows Formation till from central Iowa. Visually identifiable fractures were present on the top and bottom of every sample. Results indicate that the visual identification of fractures does not predict a connected fracture network, as some samples produced breakthrough curves showing rapid first arrival times and shapes characteristic of solute transport in a fractured medium, while others appeared similar to an unfractured medium. No correlation was found between the number of visible fractures and K (Pearson's r = 0.25), or Br- first arrival time (r = −0.33), but a strong negative correlation between K and first arrival time (r = −0.92). Results indicate that the sample volume was not large enough to reliably contain a connected fracture network. Thus, testing large volumes of till at the field scale coupled with fracture-flow modeling likely represents the best approach for estimating hydraulic and mass transport properties for fractured till.  相似文献   

13.
Speculation about its possible super-rotation has drawn the attention of many geophysical researchers to the Earth’s inner core. An issue of special interest for geodynamo modelling is the influence of the inner-core conductivity. It has been suggested that the finite magnetic diffusivity of the inner core prevents more frequent reversals of the Earth’s magnetic field. We explore the possible influence of the inner-core conductivity by comparing convection-driven 3D dynamo simulations with insulating or conducting inner cores (CIC) at various parameters. The influence on the field structure in the outer core is only marginal. The time behaviour of dipole-dominated non-reversing dynamos is also little affected. Concerning reversing dynamos, the inner-core conductivity reduces the number of short dipole-polarity intervals with a typical length of a few thousand years. Reversals are always correlated with low dipole strength and these short intervals are found in periods where the dipole moment stays low. Polarity intervals longer than about 10,000 years, where the dipole moment has time recover in strength, are equally likely in insulating and CIC models. Since these latter intervals are of more geophysical relevance, we conclude that the influence of the inner-core conductivity on Earth-like reversal sequences is insignificant for the dynamo model employed here.  相似文献   

14.
Measurement uncertainty is a key hindrance to the quantification of water fluxes at all scales of investigation. Predictions of soil‐water flux rely on accurate or representative measurements of hydraulic gradients and field‐state hydraulic conductivity. We quantified the potential magnitude of errors associated with the parameters and variables used directly and indirectly within the Darcy – Buckingham soil‐water‐flux equation. These potential errors were applied to a field hydrometric data set collected from a forested hillslope in central Singapore, and their effect on flow pathway predictions was assessed. Potential errors in the hydraulic gradient calculations were small, approximately one order of magnitude less than the absolute magnitude of the hydraulic gradients. However, errors associated with field‐state hydraulic conductivity derivation were very large. Borehole (Guelph permeameter) and core‐based (Talsma ring permeameter) techniques were used to measure field‐saturated hydraulic conductivity. Measurements using these two approaches differed by up to 3\9 orders of magnitude, with the difference becoming increasingly marked within the B horizon. The sensitivity of the shape of the predicted unsaturated hydraulic conductivity curve to ±5% moisture content error on the moisture release curve was also assessed. Applied moisture release curve error resulted in hydraulic conductivity predictions of less than ±0\2 orders of magnitude deviation from the apparent conductivity. The flow pathways derived from the borehole saturated hydraulic conductivity approach suggested a dominant near‐surface flow pathway, whereas pathways calculated from the core‐based measurements indicated vertical percolation to depth. Direct tracer evidence supported the latter flow pathway, although tracer velocities were approximately two orders of magnitude smaller than the Darcy predictions. We conclude that saturated hydraulic conductivity is the critical hillslope hydrological parameter, and there is an urgent need to address the issues regarding its measurement further. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

In the case of straight flow but with hydraulic conductivity varying in a transverse direction, the distribution of hydraulic conductivity has been determined for which the breakthrough curve due to convection only will have the same analytical form as the onedimensional convection/dispersion equation solution at the outlet end of a porous medium. That distribution is found exactly and it is very similar to the lognormal distribution. This result is significant since field evidence indicates that the logarithm of hydraulic conductivity is normally distributed. For the case considered, a simple relation between dispersivity and the coefficient of variation of hydraulic conductivity is found. One can thus determine very simply dispersivity in terms of the parameters of the distribution of hydraulic conductivity. This is particularly useful to estimate dispersivity in various cells of finite difference or finite element models when the distribution of hydraulic conductivity is not stationary, i.e. varies in space.  相似文献   

16.
In hydrogeology there is a variety of empirical formulae available for determination of hydraulic conductivity of porous media, all based on the analysis of grain size distributions of aquifer materials. Sensitivity of NMR measurements to pore sizes makes it a good indicator of hydraulic conductivity. Analogous to laboratory NMR, Magnetic Resonance Sounding (MRS) relaxation data are of a multi-exponential (ME) nature due to the distribution of different pore sizes in an investigated rock layer. ME relaxation behaviour will also arise due to the superposition of NMR signals which originate from different layers. It has been shown, that both kinds of ME behaviour coexist in MRS and can principally be separated by ME inversion of the field data. Only a few publications exist that have proposed approaches to qualitatively and quantitatively estimate petrophysical parameters such as the hydraulic conductivity from MRS measurements, i.e. MRS porosity and decay times. The so far used relations for the estimation of hydraulic conductivity in hydrogeology and NMR experiments are compared and discussed with respect to their applicability in MRS. Taking into account results from a variety of laboratory NMR and MRS experiments mean rock specific calibration factors are introduced for a data-base-calibrated estimation of hydraulic conductivity when no on-site calibration of MRS is available. Field data have been analysed using conventional and ME inversion using such mean calibration values. The results for conventional and ME inversion agree with estimates obtained from well core analysis for shallow depths but are significantly improved using a ME inversion approach for greater depths.  相似文献   

17.
In hydrogeology there is a variety of empirical formulae available for determination of hydraulic conductivity of porous media, all based on the analysis of grain size distributions of aquifer materials. Sensitivity of NMR measurements to pore sizes makes it a good indicator of hydraulic conductivity. Analogous to laboratory NMR, Magnetic Resonance Sounding (MRS) relaxation data are of a multi-exponential (ME) nature due to the distribution of different pore sizes in an investigated rock layer. ME relaxation behaviour will also arise due to the superposition of NMR signals which originate from different layers. It has been shown, that both kinds of ME behaviour coexist in MRS and can principally be separated by ME inversion of the field data. Only a few publications exist that have proposed approaches to qualitatively and quantitatively estimate petrophysical parameters such as the hydraulic conductivity from MRS measurements, i.e. MRS porosity and decay times. The so far used relations for the estimation of hydraulic conductivity in hydrogeology and NMR experiments are compared and discussed with respect to their applicability in MRS. Taking into account results from a variety of laboratory NMR and MRS experiments mean rock specific calibration factors are introduced for a data-base-calibrated estimation of hydraulic conductivity when no on-site calibration of MRS is available. Field data have been analysed using conventional and ME inversion using such mean calibration values. The results for conventional and ME inversion agree with estimates obtained from well core analysis for shallow depths but are significantly improved using a ME inversion approach for greater depths.  相似文献   

18.
— A new non-contact and non-destructive optical scanning instrument provided a large number of high-precision measurements of thermal conductivity tensor components in samples of sedimentary and impact rocks, as well as new insights into interrelations between thermal conductivity and other physical properties. More than 800 core samples (dry and fluid-saturated) of sedimentary rocks from different Russian oil-gas deposits and impact rocks from the well “Nördlingen 1973” drilled in the Ries impact structure (Germany) were studied using optical scanning technology. It was established that the thermal conductivity parallel to the stratification is more informative for petrophysical investigations than the thermal conductivity perpendicular to the layering. Different approaches were developed to estimate porosity, permeability, pore space geometry, and matrix thermal conductivity with a combination of thermal conductivity measurements in dry and fluid-saturated samples and mathematical modelling. These approaches allow prediction of the rock porosity and permeability and their spatial distribution along a well using thermal conductivity measurements performed with the optical scanning instrument directly applied to cores. Conditions and constraints for using Lichtenecker-Asaad's theoretical model for the estimation of porosity and thermal conductivity of sedimentary rocks were determined. A correlation between thermal conductivity and acoustic velocity, porosity, density, and electric resistivity of impact rocks was found for different rock types. New relationships between permeability, electrical and thermal conductivity found for sedimentary rocks are described.  相似文献   

19.
Entrapped biogenic gas in peat can greatly affect peatland biogeochemical and hydrological processes by altering volumetric water content, peat buoyancy, and ‘saturated’ hydraulic conductivity, and by generating over‐pressure zones. These over‐pressure zones further affect hydraulic gradients which influence water and nutrient flow direction and rate. The dynamics of entrapped gas are of global interest because the loss of this gas to the atmosphere via ebullition (bubbling) is likely the dominant transport mechanism of methane (CH4) to the atmosphere from peatlands, which are the largest natural terrestrial source per annum of atmospheric CH4. We investigated the relationship between atmospheric pressure and temperature on volumetric gas content (VGC) and CH4 ebullition using a laboratory peat core incubation experiment. Peat cores were incubated at three temperatures (one core at 4 °C, three cores at 11 °C, and one core at 20 °C) in sealed PVC cylinders, instrumented to measure VGC, pore‐water CH4 concentrations, and ebullition (volume and CH4 concentrations). Ebullition events primarily occurred (71% of the time) during periods of falling atmospheric pressure. The duration of the drop in atmospheric pressure had a larger control on ebullition volume than the magnitude of the drop. VGC in the 20 °C core increased from the onset of the experiment and reached a fluctuating but time‐averaged constant level between experiment day 30 and 115. The change in VGC was low for the 11 °C cores for the initial period of the experiment but showed large increases when the growth chamber temperature increased to 20 °C due to a malfunction. The core maintained at 4 °C showed only a small increase in entrapped gas content throughout the experiment. The 20 °C core showed the largest increase in VGC. The increases in VGC occurred despite pore‐water concentrations of CH4 being below the equilibrium solubility level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Timms WA  Hendry MJ 《Ground water》2008,46(4):616-628
Characterizing and predicting reactive solute transport in low hydraulic conductivity ( K ) clay-rich media is challenging because the very long transport time for solutes renders conventional column tests impractical. In this study, a centrifugation technique was developed to assess the transport of a simple aqueous solution (NaCl) by accelerating flow by centrifugal force through low K (1.1 × 10−11 m/s) core samples. Duplicate cores (52-mm length × 33-mm diameter) were centrifuged at 330 × g for 90 d to model the migration of saline pore water (0.5 M NaCl) under in situ conditions through an approximately 17-m-thick clay prototype over approximately 24,000 years. A PHREEQC one-dimensional reactive solute transport code simulated effluent breakthrough of the NaCl during centrifugation, with best-fit cation exchange coefficients similar to batch tests. The calibrated code was used to predict solute profile development over the long term in the prototype or simulated field-scale conditions. Chromatographic separation of solutes due to ion exchange was evident over several meters in the simulated prototype and the field profile. The applicability of centrifugation methods to predict transport of more complex suites of reactive solutes over the long term is yet to be verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号