首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
硝酸盐的氮和三氧同位素(δ15N, δ17O和δ18O)及氧同位素非质量分馏(△17O)综合研究, 可以更有效地示踪硝酸盐的来源和形成过程、制约硝酸盐的形成条件。本文详细描述了细菌反硝化法测定10–6级硝酸盐氮和三氧同位素的分析测试方法和实验要点。综合优化改良的细菌反硝化前处理方法、全自动气体预浓缩富集纯化系统和测试流程, 实现了实验室长期测定数据的稳定性, 以及多批次标准样品测定的良好重现性。10 nmol NO– 3标准样品的δ18O和δ15N测试精度分别是0.25‰(1σ)和0.40‰(1σ)。80 nmol NO– 3标准样品的δ18O、δ17O和δ15N的测试精度分别是0.5‰(1σ)、0.4‰(1σ)和0.1‰(1σ), 据此计算出的Δ17O精度为0.46‰(1σ)。  相似文献   

2.
不纯碳酸盐碳氧同位素组成的在线分析   总被引:13,自引:3,他引:10  
利用 GV IsoPrime(R)Ⅱ型稳定同位素质谱仪测量不纯碳酸盐样品的碳氧同位素组成,这些样品是用国家碳酸盐碳氧同位素一级标准物质 GBW04406与去除了碳酸盐的沉积物混合配制而成的, CaCO3含量在 2%~ 90%之间.结果显示 ,δ 13C内部精度为 0.002‰~ 0.005‰ (1σ ),δ 18O内部精度为 0.003‰~ 0.009‰ (1σ ),与测量所得的纯 CaCO3国际国内标准物质结果的内部精度范围一致,且外部精度达到仪器的指标要求,同时 ,不同 CaCO3含量样品的δ 13C和δ 18O的测量值 (测量平均值:δ 13C =-10.932‰± 0.021‰,δ 18O=-12.483‰± 0.054‰; 1σ )也在误差允许范围之内与 GBW04406推荐值 (δ 13C=-10.85‰± 0.05‰, δ 18O =-12.40‰± 0.15‰ ; 1σ )一致.可见碳酸盐的含量并不影响其碳氧同位素组成的分析结果,所以在线分析不纯碳酸盐的碳氧同位素组成是可行的,在线分析不纯碳酸盐样品的碳氧同位素组成之前应先对样品中碳酸盐含量进行大致估计,根据碳酸盐含量高低来确定样品用量以达到最佳分析效果.  相似文献   

3.
蓝高勇  吴夏  杨会  唐伟  应启和  王华 《岩矿测试》2017,36(5):460-467
激光同位素光谱分析方法是近些年使用较广泛的一种便捷、快速的测试稳定同位素组成的技术,能同时分析出水中δD、δ~(18)O同位素组成,因其操作简单,检测效率高,体积小,野外现场测试携带方便,迅速在环境、地质、生态和能源等领域得到广泛应用,但是该测试分析方法尚没有相应的国家标准,测试结果得不到有效的溯源,在使用过程中缺乏规范和统一。为此,本文通过在全国范围内12家实验室选取8个比对水样(δD值在-189.1‰~-0.4‰内,δ~(18)O值在-24.52‰~0.32‰内),利用激光同位素光谱法测试比对D/H和18O/16O值,探讨激光同位素光谱仪分析水中δD、δ~(18)O值的准确度和精密度。测试结果表明:各个协作实验室数据准确、稳定,方法的重复性和再现性良好;激光光谱法测定的δD精密度为0.4‰(1σ),δ~(18)O精密度为0.05‰(1σ),与传统稳定同位素质谱的精度几乎一致,因此适用于常规水样中δD、δ~(18)O测定,可以开展野外在线实时检测水中氢氧同位素组成。本研究为开展制定激光同位素光谱法测定环境液态水中δD、δ~(18)O同位素组成标准方法的工作推广和应用提供了参考。  相似文献   

4.
用连续流同位素质谱对水样中溶解无机碳含量和碳同位素组成的测量方法进行了研究,使用德国Finnigan公司DeltaPlusXP同位素质谱仪和GasBenchⅡ在线制样装置对实验室制备的四个实验室标准进行了反应流程、平衡时间、信号强度、数据精度、标准稳定性等检测,结果显示平衡时间大于4h检测信号达到稳定,同时发现44CO2信号强度和水样中溶解无机碳(DIC)浓度具有很好的相关性,因此可以利用信号强度来计算原样品中的DIC浓度。在四个实验室标准中,由NaHCO3配置的标准具有非常好的稳定性和精度,可以作为测试的工作标准。本方法测量水样中溶解无机碳的δ13C分析精度为0.1‰。本方法可以广泛应用于自然界各种水体中溶解无机碳(DIC)含量及其稳定碳同位素组成的分析。  相似文献   

5.
海洋沉积物孔隙水中溶解无机碳(DIC)的碳同位素分析方法   总被引:1,自引:0,他引:1  
海水中往往含有一定量的溶解CO2(以HCO-3存在),其δ13C值组成十分恒定,一般在0‰值附近。赋存在海底沉积物中的孔隙水往往含有比海水更高的溶解CO2含量,且其碳同位素组成变化极大。对这些溶解CO2的碳同位素组成进行分析,能够为我们了解海底沉积物沉积-成岩过程和生物地球化学过程提供十分丰富的信息。为此,开展了沉积物孔隙水中溶解CO2 (DIC)的碳同位素分析方法的研究。 采用的仪器为德国Finnigan公司生产的连续流质谱仪(Delta Plus XP)及与之联机的多功能制样装置(Gas Bench)。 Delta Plus XP为稳定同位素比值质谱仪,可以进行C、H、O、S、N等稳定同位素比值的测定,内精度小于0.1‰,外精度为0.1‰,稳定性好于0.03×10-6nA/h。Gas Bench为多功能在线制样装置,可进行CO2-H2O平衡法氧同位素,溶解二氧化碳碳同位素,碳酸盐碳氧同位素,空气中氮同位素及氮总量的前期制样,由于使用自动制样系统,具有处理时间短,效率高的优点。 样品分析过程:首先在自动进样器中对样品管进行烘烤(45℃),然后拧紧瓶盖向样品管中充入氦气(16 min/管),充气完毕之后开始加人样品,使用注射器向管中注射0.5 mL样品,下一步使用加酸装置向管中注人磷酸反应平衡,磷酸用量大约0.3 mL左右,反应式如下: H3PO4+HCO-3 aq===CO2(g)+H2PO- 4…+H2O…… 平衡1h后利用氦气将反应生成的气体CO2送人Delta Plus XP质谱仪测试。 实验过程中,制备了3个水样标准。NJWCS-l为直接取自实验室的Mill-Q纯净水,NJWCS-2为Mill-Q纯净水经蒸沸再冷却后,装人一密封的瓶子中,并向瓶中通人实验室用超纯钢瓶CO2气约4h,使CO2气充分溶解在水中并达到平衡。该瓶气体的δ13C值为-21.85‰。NJWCS-3为南京大学的自来水。 在不同时间对上述标准水样进行碳同位素组成测试结果表1。 实验过程中,选取3个采自南海北部某区海底沉积物孔隙水样品,进行了多次重复测试。结果表明,测试结果十分稳定。其中S-1的δ13C值(-5.11±0.12)‰( n=4); S-2的梦δ13C值(-27.13±0. 02)‰( n=2);S-3的δ13C值(-29.34±0.37)‰(n=2)。 综上所述,通过笔者建立的分析方法,可对沉积物中孔隙水溶解无机碳碳同位素组成进行准确测试。这一方法的建立,有利于对海洋沉积物孔隙水中可能存在的碳同位素组成异常及其与天然气水合物的关系进行深人探讨。同时,该方法也完全适合于测定自然界中其他水体(如湖水、河水、油田卤水、地下水等)的溶解无机碳的碳同位素组成,因而该方法有着广泛的应用前景。  相似文献   

6.
本文介绍了大邓格金多金属矿床地质特征,对矿床主量元素、硫同位素、氢-氧同位素及流体包裹体作了测试分析,总结了矿床地球化学特征,讨论了成矿物质来源及成矿物理化学条件。主量元素分析表明蚀变过程中Si O2、K2O含量增高,Na2O、Al2O3、Ca O等含量降低;硫同位素组成δ34SCDT值为7.0‰~7.1‰,指示硫可能来自于均一化程度较高的统一流体库;氢同位素组成δDV-SMOW变化范围较大,为-83.68‰~-116.95‰,氧同位素组成δ18O水值为-2.57‰~8.35‰,显示了成矿流体以岩浆水与大气降水组成的混合水为主;成矿流体主要为中温(86~429℃)、低盐度(1.74%~22.38%Na Cleq),属CO2-H2O-N2-Na Cl体系。成矿期流体表现出多期、多来源特征,体系物理化学条件的改变和流体的不混溶是导致金等成矿元素沉淀和富集的重要机制。  相似文献   

7.
不同检测方法对氢氧同位素分馏的影响   总被引:5,自引:3,他引:2  
杨会  王华  应启和  林宇  涂林玲 《岩矿测试》2012,31(2):225-228
氢氧同位素的检测方法由最初的离线双路进样同位素比质谱法(Dual-inlet IRMS),发展到自动化程度较高的连续流水平衡法(Gasbench-IRMS)检测方法以及现阶段正在研究使用的热转换元素分析同位素比质谱法(TC/EA-IRMS)。为了探讨不同检测方法对氢氧同位素分馏的影响以及各方法的优缺点,文章应用Dual-inlet IRMS、GasbenchⅡ-IRMS、TC/EA-IRMS三种检测方法对四种不同水样的氢氧同位素进行检测,并用国际标准和国家标准对检测结果进行校正。结果表明,Dual-inlet IRMS法检测氢同位素的精密度高,重现性好;Gasbench-IRMS法检测氢同位素的结果重现性较差;Dual-inlet IRMS和Gasbench-IRMS法检测氧同位素要比TC/EA-IRMS法的精密度高,重现性好。用TC/EA-IRMS法检测氢氧同位素,分别用国际标准和国家标准校正,δD值的最大绝对偏差为1.13‰,δ18O值的最大绝对偏差为0.27‰。测定不同水样的氢氧同位素时,连续流GasbenchⅡ-IRMS测定氧同位素较有优势,而TC/EA-IRMS测定氢同位素比较有优势。样品测试过程中选用的校正标准不同,检测结果也存在一定的误差。  相似文献   

8.
文章讨论了采用在线连续流元素分析仪-同位素质谱仪(EA/HT-IRMS)分析水中氢、氧同位素组成时盐度的影响。用高纯去离子水与NaCl配制不同盐度水进行对比测试发现,当水的电导率超过40 100μS/cm时,盐分影响水样的汽化,造成质谱峰出现拖尾现象。进行实际水样蒸馏前与蒸馏后对比测试,确定实际样品的电导率高于9 780μS/cm时,则需要进行蒸馏处理。水样电导率低于9 780μS/cm时,可以直接分析水中氢、氧同位素组成,分析精密度分别为1‰、 0.2‰。  相似文献   

9.
本文着重对天皮山伟晶岩的氧、氢、碳同位素的组成和成因进行了研究。经测定,伟晶岩中石英的氧同位素值域为12—14.4‰;平均值为13.8‰;白云母的氧同位素值域为11.5—12.2‰,平均值为11.9‰。这些数值与其围岩的氧同位素值一致,表明伟晶岩导源于周围的变质岩。白云母的氢同位素值域为-30.3——59.4‰,平均值为-48.9‰;石英中流体包裹体中水的氢同位素值域为-32——73.4‰,平均值为-59.1‰。δ~(13)O_(H_2O)和δD_(H_2O)值域表明本区伟晶岩中的水主要来自岩浆水,少部分来自地表水。石英包裹体中的碳同位素值有-5.5‰和-19.6‰两组,重碳可能来自地壳深部的原生碳,轻碳可能来自围岩中的有机碳。  相似文献   

10.
王华  吴夏  蓝高勇  杨会  唐伟  应启和 《地质学报》2015,89(10):1804-1813
GasbenchⅡ-连续流稳定同位素质谱仪(IRMS)联用在线分析已成为水中δD、δ18 O和δ13 CDIC分析测试的常用方法。为了探讨GasbenchⅡ-IRMS检测方法对δD、δ18 O和δ13 CDIC分析准确度和精确度,通过国家海洋局第三海洋研究所、河海大学、南京地质矿产研究所、成都理工大学、中国地质科学院水文地质环境地质研究所、中国地质科学院矿产资源研究所、中国地质科学院岩溶地质研究所7家实验室的在线的连续流GasbenchⅡ-MAT253检测仪器,采用CO2-H2O平衡法、疏水铂催化H2-H2O平衡分析方法分析海水(YHS)、云南水(YYNS)和西藏水(YXZS)中δD、δ18 O,采用磷酸法分析工作标准HDIC、KSTD、饮用水(HBLS)、饮用水(HNF),海水(HHSY)中δ13 CDIC。测试数据表明连续流GasbenchⅡ-IRMS得到较好的准确度及较高的精密度。δD精密度好于1.05‰,δ18 O精密度好于0.15‰,δ13 CDIC精密度均好于0.12‰。本研究为水中δD、δ18 O和δ13 CDIC分析的测试技术选取提供了一定的参考,保证δD、δ18 O和δ13 CDIC结果的可靠性和准确性。  相似文献   

11.
水中氢氧同位素不同分析方法的对比   总被引:4,自引:4,他引:0  
采用在线的连续流Gasbench Ⅱ-IRMS和离线的Dual-inlet IRMS分析方法分析水样中氢氧同位素组成.对比两种分析系统结果表明,运用离线的Dual-inlet IRMS测定氢同位素,精密度均小于1‰,比在线的连续流Gasbench Ⅱ-IRMS重现性和精度好;运用离线的Dual-inlet IRMS和在...  相似文献   

12.
水中氢氧同位素组成的时空差异性,为水循环、古气候环境反演、水源识别等研究提供了一种非常有效的技术手段。文章采用热转换元素分析同位素比质谱法(TC/EA-IRMS),实现了在线单次分析过程中同时测定微量水的δD和1δ8O,用样量仅需0.2μL;δD和1δ8O的分析精度分别为0.81‰和0.06‰。通过分类测试(δD值相差小于50‰的水样和标准水列为同一类进行测试)等措施可消除记忆效应,同时实现对测试结果的精确校正,而无需准确标定参考气和测定H3+因子。  相似文献   

13.
自然水中氧和氢同位素分析已广泛应用于水文、海洋、气象、地热以及地球化学等方面的研究。其中CO_2-H_2O平衡法虽然装置简单,操作容易,分析精度高,但只适用毫升量样品,对于矿物中包裹体水的微升量样品就难以分析。五氟化溴法对微升量水虽能进行氧同位素分析,不过方法较复杂,而且无法对氧、氢进行连续分析。  相似文献   

14.
硫酸盐的氧同位素测量方法   总被引:7,自引:0,他引:7  
硫酸盐不仅是常见矿物,还是自然界少数几个具有氧同位素非质量分馏效应的矿物之一。硫酸盐矿物的氧同位素组成,特别是硫酸盐的氧同位素非质量分馏效应,可以为研究其形成过程和条件提供大碹有用信息,揭示一些元素浓度甚至单个同位素比值测量无法获得的特殊作用过程。但由于硫酸盐的氧同位素分析技术难度大,这一方法在国内尚未建立起来。论文介绍了BrF5法测量硫酸盐氧同位素组成的实验装置、分析流程和测量结果。该方法是目前唯一可以同时测量硫酸盐^17O/^16O和^18O/^16O比值的方法。对BaSO4国际氧同位素标准样品NBS-127和一种BaSO4化学试剂进行了多次重复测量。测量的NBS-127国际标样的δ^18Ov-SMOW=(9.20±0.11)‰,与标准值完全一致;BaSO4化学试剂的δ^18Ov-SMOW=(14.64±0.13)‰。分析精度(标准偏差)达到0.13%。(1σ),优于国外(0.15~0.29)‰(1σ)的水平  相似文献   

15.
地下水硝酸盐15N和18O同位素在线测试技术研究   总被引:1,自引:1,他引:0  
测定水和土壤的氮氧同位素组成能够识别硝酸盐来源和研究氮素的迁移转化过程,用在线高温热解法测试硝酸盐的15N和18O同位素是目前应用最广泛、最流行的高新技术.但是由于离子源内NO的干扰,使该方法测定的δ㈨O值不准确,而采用He稀释法则可有效减少该项干扰 本文选取4个国际标准样品(IAEA-No-3、USGS32、USGS34和USGS35)和一个实验室标准样品(CUGL-No-1),使用元素分析仪耦合MAT 253稳定同位素比值质谱仪(EA-IRMS),在8个月时间内对100多个地下水样品进行238次测试,对在线高温热解测试硝酸盐15N和18O技术进行了检验,验证其实用性.得到三点新认识:①用KNO3作为靶样品形式成本低,且便于和国际标准对比;②在线高温热解法测定标准和样品中硝酸盐的15N和18O同位素组成需样量仅为500μg的KNO3,一次选样可同时测定NO3的δ15N和δ 18O,消耗时间仅720 s,δ15N和δ 18O的测试精度分别为0.25‰、0.6‰,达到了国外相应水平,速度快,效率高;③He稀释法可减少离子源内NO对δ 18O测试的干扰,不必改变EA-IRMS系统的任何硬件.  相似文献   

16.
传统的氧同位素分析方法一般将各种形式的氧转化为CO2,再通过稳定同位素质谱测定其氧同位素组成,由于二氧化碳中的17O和13C在质谱中有相同的质荷比m/z,这种方法不能测得17O同位素的丰度,三氧同位素(16O、17O、18O)丰度分析的关键是17O同位素丰度的分析.为了测量17O同位素丰度,一般需要先将各种形式的氧转化为O2,然后利用稳定同位素质谱进行分析,转化过程复杂或者有危险.本文提出了一种新思路,应用稳定同位素质谱与碳同位素光谱相结合的方法分析17O/16O.先采用传统方法将各种形式的氧转化为CO2,再由多接收器稳定同位素质谱计测得CO2的质谱峰高比45/44(记为R45),同位素光谱如光腔衰荡光谱测得13C/12C(定义为R13),计算其同位素比值17O/16O=(R45-R13)/2,方法的分析精度好于±0.08‰(1σ).该方法是在传统方法的基础上,增加一个CO2碳同位素光谱分析步骤,通过简单的数据处理就可以获得17O同位素组成,而无需将各种形式的氧转化为O2,18O同位素样品制备方法成熟,无危险性,且分析精度优于或相当于其他测试方法.  相似文献   

17.
多接收等离子质谱(MC-ICP-MS )测定Mg同位素初步研究   总被引:3,自引:3,他引:3  
常量元素Mg的同位素比值,应用在地球化学上有重要意义。笔者采用“样品-标准”交叉技术,以国际标准SRM980,AIdrich, Romil和实验室标准GSB作为实验材料,探讨浓度和基质效应影响,尝试建立高精度多接收等离子质谱(MC-ICP-MS)测定Mg同位素方法。相对于国际标准物质SRM980,本研究测得的国际标准物质Aldrich的δ26Mg和δ25Mg值分别为(2.64±0.15)‰(2σ)和(1.34±0.09)‰(2σ); Romil的δ26Mg和δ25Mg值分别为(2.46±0.15)‰(2σ)和(1.27±0.08)%(2σ);国土资源部同位素地质重点实验室的实验室标准GSB的δ26Mg和δ25Mg值分别为(4.05±0.03)‰(2σ)和(2.05±0.03)‰(2σ)。  相似文献   

18.
激光熔蚀微量氧同位素分析方法及其地质应用   总被引:2,自引:1,他引:1  
高建飞  丁悌平 《地质论评》2008,54(1):135-144
研究小尺度或微区的同位素组成变化已成为地球化学分析技术发展的重要方向之一。在研制CO2激光熔蚀氧同位素制样装置的基础上,通过该装置与MAT253质谱计联机实现了硅酸盐和氧化物矿物的氧同位素在线分析。所测样品包括NBS28石英标样、石英玻璃,以及天然的石榴子石、锆石、橄榄石等一些难熔矿物。该装置分析的颗粒样品氧同位素分析精度为±022‰,最低样品量为8μmol的O2;石英玻璃原位分析的氧同位素分析精度为±035‰,最低样品量为7μmol的O2。这种装置和分析方法具备速度快,熔样温度高的特点,尤其适于难熔矿物。该装置可采用脉冲激光实现石英玻璃的微区原位分析,可应用于单个矿物生成环带的氧同位素研究。  相似文献   

19.
锂同位素研究是非传统稳定同位素地球化学研究的前沿,已广泛应用于从地表到地幔的岩石圈及流体等固体地球科学的研究领域。准确测定锂同位素比值是应用该同位素体系的前提。本文报道了国际上7种常用地质标准物质(BHVO-2、JB-2、BCR-2、AGV-2、NKT-1、L-SVEC、IRMM-016)的锂同位素组成数据。分析中采用硝酸-氢氟酸混合酸消解岩石标准样品,通过3根阳离子交换树脂(AG50W-X8,200~400目)填充的聚丙烯交换柱和石英交换柱对锂进行分离富集,利用Neptune型多接收器电感耦合等离子体质谱(MC-ICPMS)测定锂同位素比值,使用标准-样品交叉法(SSB)校正仪器的质量分馏。实验得到这7种常用地质标准物质的锂同位素组成与测试精度(2SD)分别为:δ7LiBHVO-2—L-SVEC=4.7‰±1.0‰(n=53),δ7LiJB-2—L-SVEC=4.9‰±1.0‰(n=20),δ7LiBCR-2—L-SVEC=4.4‰±0.8‰(n=8),δ7LiAGV-2—L-SVEC=6.1‰±0.4‰(n=14),δ7LiNKT-1—L-SVEC=9.8‰±0.2‰(n=3),δ7LiL-SVEC—L-SVEC=-0.3‰±0.3‰(n=10),δ7LiIRMM-016—L-SVEC=0.0‰±0.5‰(n=10),这些数据在误差范围内与国际上已发表的数据一致。Li同位素分析精度可以达到大约0.5‰,长期的分析精度即外部重现性≤±1.0‰,达到了国际同类实验室水平。7种常用地质标准物质的锂同位素组成数据的发表为锂同位素研究提供了统一的标准,使地质样品的锂同位素数据的质量监控成为可能。在基质效应的研究中,使用不同量的IRMM-016配制的标准溶液过柱,深入探讨了样品量对锂同位素测定值的影响,结果表明,在现有测试精度下,只要分析样品的锂含量达到100μg/L,且不超过树脂的承载量,样品的锂同位素组成在误差范围内与真值吻合,样品量的大小不影响锂同位素测定结果的准确性。  相似文献   

20.
硫酸盐硫同位素的常规分析方法是将硫酸盐转化为硫酸钡后搭配双路进样SO2法,该法易于操作、数据稳定,但样品用量大、费时费力,需要繁杂的前处理,无法满足微量分析发展方向的需求。本文以石膏为例,以元素分析仪-气体同位素质谱法(EA-IRMS)直接测定硫酸钙样品硫同位素比值,对同一样品分别采用:①硫酸钙与V2O5混合后包裹于锡杯中密封,直接进行元素分析仪-气体同位素质谱分析;②硫酸钙充分溶于去离子水中,向溶有硫酸钙样品的液体中加入沉淀试剂BaCl2,将生成的硫酸钡沉淀滤出后,用去离子水清洗2~3遍,烘干后与V2O5混合包裹于锡杯中密封再进行质谱测定。实验选取了13件δ34S值变化范围介于-20‰^+30‰之间的天然石膏样品,将获得的硫同位素比值进行对比,二者δ34SV-CDT绝对差值在0.00‰~0.24‰,表明同一样品的硫同位素比值结果在误差范围内基本一致。与常规分析方法相比,本文建立的直接在线分析时无需任何化学前处理,只需直接加入适量的V2O5,V2O5和氧气中的外部氧在瞬间燃烧的过程中替代了硫酸钙本身的氧,生成的SO2气体的氧是均一的,其硫同位素比值能代表样品的硫同位素组成,无需进行氧同位素的校正。经过验证表明,硫酸钙样品的直接在线分析是完全可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号