首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MC-ICP-MS高精度测定Pb同位素比值   总被引:1,自引:1,他引:1  
多接收器等离子体质谱是近年发展起来的高精度同位素分析手段之一,通过用等离子体质谱测量Pb国际标准物质NBS981和NBS982,显示出多接收器等离子体质谱分析Pb同位素的优势。利用205Tl/203Tl进行作为内标,可以实现Pb同位素的质量分馏校正,极大地提高了Pb同位素分析的重现性。相比较热电离质谱,该方法精度更高,样品的用量更少,测试时间更短,多接收器等离子体质谱测定Pb同位素技术有良好的应用前景。  相似文献   

2.
The authors measured Pb isotope compositions of seven USGS rock reference standards, i.e. AGV-1, AGV-2, BHVO-1, BHVO-2, BCR-2, BER-1/1 and W-2, together with NBS 981 using a micromass isoprobe multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) at the University of Queensland. 203Tl-205Tl isotopes were used as an internal standard to correct for mass-dependant isotopic fractionation. The results for both NBS 981 and USGS rock standards AGV-1 and BHVO-1 are comparable to or better than double- and triple-spike TIMS (thermal ionization mass spectrometry) data in precision. The data for BHVO-2 and, to a lesser extent, AGV-2 and BCR-2 are reproducibly higher for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb than double-spike TIMS data in the literature. The authors also obtained the Pb isotope data for BIR-1/1 and W-2, which may be used as reference values in future studies. It is found that linear correction for Pb isotopic fractionation is adequate with the results identical to those corre  相似文献   

3.
This contribution presents data for laser ablation multicollector ICP‐MS (LA‐MC‐ICP‐MS) analyses of NIST SRM 610 and 612 glasses with the express purpose of examining the Pb isotope homogeneity of these glasses at the ~ 100 μm spatial scale, relevant to in situ analysis. Investigation of homogeneity at these scales is important as these glasses are widely used as calibrators for in situ measurements of Pb isotope composition. Results showed that at the levels of analytical uncertainty obtained, there was no discernable heterogeneity in Pb isotope composition of NIST SRM 610 and also most probably for NIST SRM 612. Traverses across the ~ 1.5 mm glass wafers supplied by NIST, consisting of between 75 and 133 individual measurements, showed no compositional outliers at the two standard deviation level beyond those expected from population statistics. Overall, the measured Pb isotope ratios from individual traverses across NIST SRM 610 and 612 wafers closely approximate single normally‐distributed populations, with standard deviations similar to the average internal uncertainty for individual measurement blocks. Further, Pb isotope ratios do not correlate with Tl/Pb ratios measured during the analysis, suggesting that regions of volatile element depletion (marked by low Tl/Pb) in these glasses are not associated with changes in Pb isotope composition. For NIST SRM 610 there also appeared to be no variation in Pb isotope composition related to incomplete mixing of glass base and trace element spike during manufacture. For NIST SRM 612 there was some dispersion of measured ratios, including some in a direction parallel to the expected mixing line for base‐spike mixing. However, there was no significant correlation parallel to the mixing line. At this time this cannot be unequivocally demonstrated to result from glass heterogeneity, but it is suggested that NIST SRM 610 be preferred for standardising in situ Pb isotope measurements. Data from this study also showed significantly better accuracy and somewhat better precision for ratios corrected for mass bias by external normalisation to Pb isotope ratios measured in bracketing calibrators compared to mass bias corrected via internal normalisation to measured 205Tl/203Tl, although the Tl isotopic composition of both glasses appears to be homogeneous.  相似文献   

4.
Lead-205 decays to 205Tl with a half-life of 15 Myr and should have been present in the early solar system according to astrophysical models. However, despite numerous attempts, Tl isotopic measurements of meteorites have been unable to demonstrate convincingly its former presence. Here, we report large (∼5‰) variations in Tl isotope composition in metal and troilite fragments from a range of iron meteorites that were determined at high precision using multiple collector inductively coupled plasma mass spectrometry. The Tl isotopic compositions of seven metal samples of the IAB iron meteorites Toluca and Canyon Diablo define a correlation with 204Pb/203Tl. When interpreted as an isochron, this corresponds to an initial 205Pb/204Pb ratio of (7.4 ± 1.0) × 10−5. Alternative explanations for the correlation, such as mixing of variably mass-fractionated meteorite components or terrestrial contamination are harder to reconcile with independent constraints. However, troilite nodules from Toluca and Canyon Diablo contain Tl that is significantly less radiogenic than co-existing metal with isotope compositions that are variable and decoupled from 204Pb/203Tl. These effects are similar to those recently reported by others for Fe and Ni isotopes in iron meteorite sulfides and appear to be the result of kinetic stable isotope fractionation during diffusion. Though it cannot conclusively be shown that the metal fragments are unaffected by the secondary processes that disturbed the troilites, mass balance modeling indicates that the alteration of the troilites is unlikely to have significantly affected the Tl isotope compositions of the co-existing metals. It is therefore reasonable to conclude that the IAB metal isochron is a product of the in situ decay of 205Pb. If the I-Xe ages of IAB silicate inclusions record the same event as the 205Pb-205Tl chronometer then crystallization of the IAB metal was probably completed between 10 and 20 Myr after the condensation of the first solids. This implies an initial solar system 205Pb/204Pb of (1.0-2.1) × 10−4, which is in excellent agreement with recently published astrophysical predictions. Similar calculations yield an initial solar system Tl isotope composition of ε205Tl = −2.8 ± 1.7. The Tl isotopic composition and concentration of the silicate Earth depends critically on the timing and mechanism of core formation and Earth’s volatile element depletion history. Modeling of the Earth’s accretion and core formation using the calculated initial solar system Tl isotope composition and 205Pb/204Pb, however, does not yield reasonable results for the silicate Earth unless either the Earth lost Tl and Pb late in its accretion history or the core contains much higher concentrations of Pb and Tl than are found in iron meteorites.  相似文献   

5.
The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols.The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ε205Tl = −2.0 ± 0.3 (ε205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ±1.5 ε205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ± 4 ng/kg and ε205Tl = −2.5 ± 1.0, respectively.In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study.  相似文献   

6.
A suite of 34 volcanic gas condensates and particulates from Kilauea (Hawaii), Mt. Etna and Vulcano (Italy), Mt. Merapi (Indonesia), White Island and Mt. Nguaruhoe (New Zealand) were analysed for both Tl isotope compositions and Tl/Pb ratios. When considered together with published Tl-Pb abundance data, the measurements provide globally representative best estimates of Tl/Pb = 0.46 ± 0.25 and ε205Tl = −1.7 ± 2.0 for the emissions of subaerial volcanism to the atmosphere and oceans (ε205Tl is the deviation of the 205Tl/203Tl isotope ratio from NIST SRM 997 isotope standard in parts per 10,000). Compared to igneous rocks of the crust and mantle, volcanic gases were found to have (i) Tl/Pb ratios that are typically about an order of magnitude higher, and (ii) significantly more variable Tl isotope compositions but a mean ε205Tl value that is indistinguishable from estimates for the Earth’s mantle and continental crust. The first observation can be explained by the more volatile nature of Tl compared to Pb during the production of volcanic gases, whilst the second reflects the contrasting and approximately balanced isotope fractionation effects that are generated by partial evaporation of Tl during magma degassing and partial Tl condensation as a result of the cooling and differentiation of volcanic gases.Mass balance calculations, based on results from this and other recent Tl isotope studies, were carried out to investigate whether temporal changes in the volcanic Tl fluxes could be responsible for the dramatic shift in the ε205Tl value of the oceans at ∼55 Ma, which has been inferred from Tl isotope time series data for ferromanganese crusts. The calculations demonstrate that even large changes in the marine Tl input fluxes from volcanism and other sources are unable to significantly alter the Tl isotope composition of the oceans. Based on modelling, it is shown that the large inferred change in the ε205Tl value of seawater is best explained if the oceans of the early Cenozoic featured significantly larger Tl output fluxes to oxic pelagic sediments, whilst the sink fluxes to altered ocean crust remained approximately constant.  相似文献   

7.
A new method has been developed for the simultaneous determination of Pb abundance and Pb isotopic composition with high precision and accuracy for small test portion masses by thermal ionisation mass spectrometry. In this method, a 205pb-204pb double spike is added to samples prior to the chemical separation of Pb, and the isotopic composition of the spike-sample mixture is determined rigorously by the double spike technique using a 207Pb-204Pb spike. The isotopic composition and concentration of Pb in the sample are then obtained by utilising the principle of isotope dilution. Using this technique, replicate determinations of Pb from NIST SRM 981 and GSJ JP-1 (peridotite; 0.07 μg g−1 Pb) were performed. The measured concentration and isotopic data were identical, within uncertainty, to published data or to data that were determined independently in this study. The application of this method to U-Pb dating and the determination of the "initial" Pb isotopic composition was also tested. Lead isotopic compositions and the concentrations of Pb, Th and U were determined for a single batch of samples, through the addition of 205pb-204pb, 230Th and 235U spikes to samples prior to chemical separation. Also in these experiments, we confirmed that this routine gives accurate data for Pb, Th and U concentrations and Pb isotopic compositions.  相似文献   

8.
A systematic study of Pb isotope composition was carried out for Elbrus Volcano, one of the Europe’s largest volcanoes, using high-precision method of multi-collector inductively coupled plasma mass spectrometry. The measurement error of Pb isotope ratios was estimated from the results of replicate analyses of international BCR-1 and AGV-1 standards as ±0.03% (±2SD). The study of a representative collection showed that dacites of all three phases of the Elbrus eruptive activity are characterized by relatively small-scale variations of Pb isotope composition: 206Pb/204Pb 18.621–18.670, 207Pb/204Pb 15.636–15.659, and 208Pb/204Pb 38.762–38.845. New Pb isotope geochemical characteristics in combination with existing Sr-Nd data indicate that the parental magmas of Elbrus are of mixed mantle-crust origin. They were formed by interaction of mantle-derived melts with continental crust of the Greater Caucasus during continental collision between the Eurasian, Arabian, Turkish, and Iranian plates.  相似文献   

9.
The lead isotopic composition of 33 sulfide samples from orebodies of the Sukhoi Log deposit was studied by high-precession MC-ICP-MS with a precision of ±0.02% (±2SD from 120 analyses of the SRM 981 standard sample). The deposit is located in the Bodaibo gold mining district in the northern Baikal-Patom Highland. Gold mineralization is hosted in Neoproterosoic black slates. Variations of lead isotope ratios of the Sukhoi Log sulfides are generally typical of Phanerozoic deposits and ore fields. They are significant for 206Pb/204Pb (17.903–18.674), moderate for 208Pb/204Pb (37.822–38.457), and relatively narrow for 207Pb/204Pb (15.555–15.679). In the Pb-Pb isotope diagrams, the data points of pyrite and galena constitute a linear trend. The points corresponding to pyrite from metasomatic ore occupy the left lower part of the trend. Galena from late gold-quartz veins shows more radiogenic Pb, and corresponding data points are located in the upper part of the trend. According to the Stacey-Kramers model, the end points of the trend, which is regarded as a mixing line, have μ2 = 9.6 and μ2 = 13.2 and model Pb-Pb ages 455 and 130 Ma, respectively. The isotope characteristics of ore lead, their relationships in pyrite and galena, and the mixing trend of Pb isotopic compositions are clearly tied to two Paleozoic stages in the formation of the Sukhoi Log deposit (447 ± 6 and 321 ± 14Ma) and testify to the leading role of crustal sources, which are suggested as being the Neoproterozoic black-shale terrigenous-carbonate rocks.  相似文献   

10.
Lead isotope ratios of galena from the carbonate-hosted massive sulphide deposits of Kabwe (Pb-Zn) and Tsumeb (Pb-Zn-Cu) in Zambia and Namibia, respectively, have been measured and found to be homogeneous and characteristic of upper crustal source rocks. Kabwe galena has average isotope ratios of 206/204Pb = 17.997 ± 0.007, 207/204Pb = 15.713 ± 0.010 and 208/204Pb = 38.410 ± 0.033. Tsumeb galena has slightly higher 206/204Pb (18.112 ± 0.035) and slightly lower 207/204Pb (15.674 ± 0.016) and 208/204Pb (38.276 ± 0.073) ratios than Kabwe galena. The isotopic differences are attributed to local differences in the age and composition of the respective source rocks for Kabwe and Tsumeb. The homogeneity of the ore lead in the two epigenetic deposits suggests lead sources of uniform isotopic composition or, alternatively, thorough mixing of lead derived from sources with relatively similar isotopic compositions. Both deposits have relatively high 238U/204Pb ratios of 10.31 and 10.09 for Kabwe and Tsumeb galenas, respectively. These isotope ratios are considered to be typical of the upper continental crust in the Damaran-Lufilian orogenic belt, as also indicated by basement rocks and Cu-Co sulphides in stratiform Katangan metasediments which have a mean μ-value of 10.25 ± 0.12 in the Copperbelt region of Zambia and the Democratic Republic of Congo (formerly Zaire). The 232Th/204Pb isotope ratios of 43.08 and 40.42 for Kabwe and Tsumeb suggest Th-enriched source regions with 232Th/235U (κ-values) of 4.18 and 4.01, respectively. Model isotopic ages determined for the Kabwe (680 Ma) and Tsumeb (530 Ma) deposits indicate that the timing of the mineralisation was probably related to phases of orogenic activity associated with the Pan-African Lufilian and Damaran orogenies, respectively. Galena from the carbonate-hosted Kipushi Cu-Pb-Zn massive sulphide deposit in the Congo also has homogeneous lead isotope ratios, but its isotopic composition is comparable to that of the average global lead evolution curve for conformable massive sulphide deposits. The μ (9.84) and κ (3.69) values indicate a significant mantle component, and the isotopic age of the Kipushi deposit (456 Ma) suggests that the emplacement of the mineralisation was related to a post-tectonic phase of igneous activity in the Lufilian belt. The isotope ratios (206/204Pb, 207/204Pb, 208/204Pb) of the three deposits are markedly different from the heterogeneous lead ratios of the Katangan Cu-Co stratiform mineralisation of the Copperbelt as well as those of the volcanogenic Nampundwe massive pyrite deposit in the Zambezi belt which typically define radiogenic linear trends on lead-lead plots. The host-rock dolomite of the Kabwe deposit also has homogeneous lead isotope ratios identical to the ore galena. This observation indicates contamination of the Kabwe Dolomite Formation with ore lead during mineralisation. Received: 8 September 1997 / Accepted: 21 August 1998  相似文献   

11.
The Reshian-Lamnian area within the Hazara-Kashmir syntaxis in Pakistan is composed mainly of the rocks of the Salkhala, Panjal and Murree formations. Base metal sulfide mineralization in the form of sphalerite and galena with lesser amounts of chalcopyrite and pyrite is present within the Salkhala Formation of the study area. Chemically all these ore phases are homogeneous in composition. The Pb isotopic composition of galena from the area suggests that there is very little or negligible variation in the ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb. Modal ages ranging from 509 to 562 Ma and the μ values of 10.71 to 10.93 have been calculated for the studied Pb-Zn mineralization. On the basis of field features, mineralogy and Pb-isotope signatures, it is concluded that the Pb-Zn sulfide mineralization in the Reshian-Lamnia area is pre-Himalayan in age and can be correlated with the Cambro-Ordovician (Pan-African) orogenic event.  相似文献   

12.
The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956–present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts–basaltic andesites are more radiogenic than Bezymianny andesites (208Pb/204Pb = 37.850–37.903, 207Pb/204Pb = 15.468–15.480, and 206Pb/204Pb = 18.249–18.278 at Bezymianny; 208Pb/204Pb = 37.907–37.949, 207Pb/204Pb = 15.478–15.487, and 206Pb/204Pb = 18.289–18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 ± 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky—Eastern Volcanic Zone; Shiveluch—Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.  相似文献   

13.
High precision isotope ratio and trace element determination can be achieved with modern quadrupole ICP-MS provided that short and long-term instrument performance is accurately monitored. Here we present results for the isotope ratios 6Li/7Li, 147Sm/149Sm, 160Dy/161Dy, 207Pb/206Pb, 208Pb/206Pb, 206Pb/204Pb and 235U/238U with which we determined long-term isotope ratio stability of relevance to both trace element and isotope determination. With respect to trace element determination, we first present long-term observations regarding oxide formation rates of Ba and Nd on light REE and heavy REE, as well as Zr on Ag. These showed good correlations and could be used to correct effectively the interference. The efficacy of this correction was demonstrated with analyses of the rock reference material BHVO-2 at both low and high oxide formation rates. Next, we studied the long-term reproducibility of a Dy isotope ratio that was measured to correct for the isobaric interference on Gd. It was found that, regardless of tuning condition, the ratio reproduced very well (0.58% RSD, 1s) and that the estimate of the Gd concentration did not suffer from the large correction (> 10%) caused by the Dy isobar. Long-term reproducibilities of Li, Sm and U isotope ratios, required for accurate mass bias correction when isotopically enriched internal standards of these elements are employed, were measured in the rock reference materials AGV-2 and JA-3 over a time period of up to 3 years. As expected, the Li isotope ratio showed the largest variability (RSD = 7%), but the other two ratios had relative external reproducibilities of only 1.01% (1s, U) and 0.67% (Sm). The mass bias-induced scatter in measurements for Sm and U was so small that the internal standard correction was effective, even for samples with high concentrations of these elements. With regard to Pb-isotope ratio determination, we also present long-term reproducibility for NIST SRM 982, run as an unknown and two accuracy tests for Pb separated from granitoids and from meteorites. It is demonstrated that the obtained ratios, including those involving 204Pb, are accurate relative to MC-ICP-MS determinations and of comparable precision to conventional TIMS analysis. The excellent agreement between all data sets shows the potential of modern quadrupole ICP-MS instrumentation for Pb-isotope determination, particularly for samples with very low Pb content.  相似文献   

14.
A laser ablation multi‐collector inductively coupled plasma‐mass spectrometry (LA‐MC‐ICP‐MS) method was developed to obtain precise and accurate Pb isotopic ratio measurements in low‐Pb materials (< 10 μg g?1) using a combination of Faraday cups and ion counters (FC–IC). The low abundance 204Pb (~ 1.4%) was collected using an IC. A NBS 981 standard solution was used to cross‐calculate the FC–IC gain and to investigate the signal response characteristics of the IC. A significant, continuous and linear decrease in the FC–IC gain was observed within 1 hr, but this drift could be corrected using the calibrator‐sample‐calibrator bracketing method. In addition, a non‐linear response of the IC used in this study was observed and corrected by a non‐linear correction algorithm, which was established by measuring a series of gravimetrically prepared NBS 981 standard solutions (NIST SRM 981). Compared with the conventional arrangement, the use of the newly designed X skimmer cone and Jet sample cone improved the signal intensities from Pb isotopes by a factor of 1.9. Compared with only Faraday cups, using a combination FC–IC array was found to enhance the measurement repeatability (RSD) of 20xPb/204Pb by approximately one order of magnitude when the 204Pb intensity was < 8 mV. Eight natural glasses and the NIST SRM 612 reference material glass (as a calibration material) were measured to evaluate the new protocol for Pb isotope determination. The analytical results were in agreement with the reference values within 2s measurement uncertainties. For MPI‐DING ATHO‐G (5.67 μg g?1 total Pb), KL2‐G (2.07 μg g?1 total Pb) and ML3B‐G (1.38 μg g?1 total Pb), the typical accuracies of 20xPb/204Pb were 0.09% of preferred values with precisions of < 0.33% (2RSD). The Pb isotope ratios in feldspars from granodiorite and within mafic microgranular enclaves (MMEs) from the Fangshan pluton, North China, were measured using the present method. The Pb isotopic compositions of feldspars from the whole host granodiorite show that that are radiogenic in the margin zone and gradually become less radiogenic. For the MMEs, the Pb isotopic compositions of feldspars are highly variable and overlap with those of the whole host granodiorite. For single‐grain feldspar, the strong rim‐core‐rim variations of the Pb isotopic compositions and trace elements are interpreted to have been generated via magma mixing. These results suggest that the Fangshan pluton underwent magma mixing of mantle‐derived mafic magmas with felsic magmas, and the proportion of the mafic magma influx decreased over time.  相似文献   

15.
铜山岭铅锌多金属矿床位于扬子地块湘南-桂东北坳陷与华夏地块粤北坳陷的拼贴部位,是中国南岭多金属成矿区代表性矿床之一。为确定矿床成矿时代,挑选铜山岭铅锌多金属矿床中含矿矽卡岩的石榴子石进行Sm-Nd同位素定年,获得的等时线年龄为173±3Ma,指示成矿作用发生于燕山早期。对金属硫化物矿物进行了Pb同位素分析,其~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb、~(208)Pb/~(204)Pb平均值分别为18.602、15.701、38.729,表明成矿物质来源于相对富集铀铅、略微亏损钍铅的上地壳源区。从(~(207)Pb/~(204)Pb)i-(~(206)Pb/~(204)Pb)i铅同位素演化模式图可知,寄主花岗闪长岩是铜山岭铅锌多金属矿床的重要物质来源,且成矿物质中可能含有寄存在花岗闪长岩中的地幔组分。  相似文献   

16.
Summary The timing of Zn–Pb mineralization hosted by early dolomitized lagoonal limestones (Crest facies) at Bleiberg (Carinthia, Austria) has been constrained using Sr-isotopes. This late stage Zn–Pb mineralization is a special feature of the Bleiberg deposit. Samples of the mineralized Crest facies are characterized by higher concentrations of minor and trace elements (except Ba and Sr) compared to samples from the weakly mineralized Wetterstein limestone of the lagoonal facies. The samples from the Crest facies indicate that a fluid with a minimum 87Sr/86Sr ratio of 0.7083 reacted at 210±30 Ma with carbonate rocks having 87Sr/86Sr ratios of approximately 0.7077 during a late stage of ore formation. The 87Sr/86Sr ratios correlate with the Mn and Cl concentrations. Lead isotope data of whole rock samples of Bleiberg yielded an isochron age of 180±40 Ma. They furthermore confirm the presence of two types of common lead; an isotopically distinct ore lead component is present within and close to the ore bodies. The other common Pb component is present in host rocks and in gangue minerals and is distinguished from the ore lead by lower 207Pb/204Pb and 208Pb/204Pb ratios. The Sr and the Pb ages are consistent with geological evidence indicating a Triassic age of Pb–Zn mineralization and support genetic models emphasizing the role of bacteriogenic sulfate reduction at low temperatures prior to subsidence and burial. Elevated 87Sr/86Sr values (>0.7080) of gangue minerals indicate an epigenetic origin of strontium. Our results are consistent with a genetic model postulating formation of the ore-bearing hydrothermal fluids “at depth” where they leached lead from pre-Upper Carboniferous basement rocks.  相似文献   

17.
《Applied Geochemistry》1997,12(1):75-81
The extent of vertical migration of anthropogenic Pb beneath a medieval smelting site in Derbyshire, U.K. has been estimated using the determination of total Pb concentrations and 206Pb/207Pb isotope ratio from samples taken down 6 m of drill core. Preliminary studies of total Pb concentrations established that the surface slag derived from the smelting contained up to 16% Pb and that the normal background levels in uncontaminated sandstone were 10±2 ppm. Sample analyses beneath the site revealed elevated Pb concentrations in fracture infill clays (270 ppm Pb) and sandstone (76–83 ppm Pb). Both are well above the background Pb concentration.Lead isotope analysis of the slag wastes, the underlying contaminated sandstone and fracture infill has shown that all 3 contain very similar isotope ratios for 206Pb/207Pb (1.1802–1.1820). However, matched control sandstone samples show that the background 206Pb/207Pb isotope ratio (1.1670 ± 0.003) is distinctly different. This would indicate that both the sandstone and fracture infill underlying the historical smelting site contain a substantial proportion of Pb that has been derived from the overlying contamination.The application of total Pb concentrations along the core and isotope analysis suggest that anthropogenically derived Pb from the smelting site (that was operated between 665 and 445 a BP) has migrated to a depth of 4.50 m. Assuming a uniform migration rate and a mean time of migration of 555 a, then the mean migration rate is estimated to be 8 ± 2 mm/a.The proportion of natural versus anthropogenic Pb in the samples has been estimated from small variations in the 206Pb/207Pb isotope ratio. If the slag is considered to contain 100% anthropogenic Pb and the uncontaminated sandstone considered to contain 100% natural Pb, the linear interpolation can be applied between the 2 end members of the isotope ratio. The use of this approach to the 206Pb/207Pb ratio measurements has shown that 88% of the Pb in the contaminated sandstone (i.e. 69 ppm from a mean total Pb concentration of 78.5 ppm) has been derived from the anthropogenic Pb at the surface. For the fracture infill sample taken at a depth of 4.50 m, and with a total Pb concentration of 270 ppm, the % of Pb that has been derived from the slag wastes is approximately 98% (equivalent to 265 ppm Pb). The remaining Pb in both these samples (9.4 and 5 ppm, respectively) is deduced to have originated from the natural background concentration of Pb in the sandstone.The closeness of these estimates to the measured background concentration, suggests that a simple two-source model of Pb contamination is valid for this site.  相似文献   

18.
Lead isotopic composition and uranium and lead concentrations have been determined for galena, sphalerite, pyrite and acetic acid soluble material from the McArthur area in order to test the hypothesis of a dual sulphur source suggested by the sulphur isotope data of Smith and Croxford (Sulphur isotope ratios in the McArthur lead-zinc-silver deposit, Nature Phys. Sci. 245, 10–12 (1973)). Galena, sphalerite and the acetic acid washes from the McArthur deposit have uniform isotopic ratios (206Pb/204Pb, 16.07–16.15; 207Pb/204Pb, 15.37–15.47; 208Pb/204Pb, 35.57–35.89) consistent with other conformable ore deposits, whereas the ratios for pyrite are variable and quite radiogenic (206Pb/204Pb, 16.24–16.49; 207Pb/204Pb, 15.42–15.58; 208Pb/204Pb, 35.82–36.98). Acid washes where dolomite is a major dissolved phase are also radiogenic. The lead in the pyrite appears to have been derived from at least two sources: the less radiogenic lead coming from an exhalative source as for galena and sphalerite and the more radiogenic lead probably being leached from the country rocks. It is proposed that analysis of pyrite for isotopic composition and concentration of lead could be used as an indicator for similar types of deposits in this area.  相似文献   

19.
High precision Sr-Nd isotope ratios together with Pb isotope ratios corrected for mass fractionation using a double spike are reported for an extensive suite of late Quaternary to Recent lavas of Iceland, the Kolbeinsey and Reykjanes Ridges, and a small number of basalts from further south on the Mid-Atlantic Ridge. Compared with global MORB, the Icelandic region is distinguished by having low 207Pb/204Pb for any given 206Pb/204Pb, expressed by negative Δ207Pb (−0.8 to −3.5) in all but four Icelandic samples. Most samples also have elevated 208Pb/204Pb (strongly positive Δ208Pb), which combined with their negative Δ207Pb is very unusual in MORB worldwide. The negative Δ207Pb is interpreted as a consequence of evolution in high-μ mantle sources for the last few hundred Ma. The region of negative Δ207Pb appears to correspond with the region of elevated 3He/4He, suggesting that both lithophile and volatile elements in melts from the whole region between 56 and 70°N are dominantly sourced in a plume that has incorporated recycled Palaeozoic ocean crust and unradiogenic He, probably from the deep mantle. At least four mantle components are recognized on Iceland, two with an enriched character, one depleted and one that shows some isotopic affinities to EM1 but is only sampled by highly incompatible-element-depleted lavas in this study. Within restricted areas of Iceland, these components contribute to local intermediate enriched and depleted components that display near binary mixing systematics. The major depleted Icelandic component is clearly distinct in Pb isotopes from worldwide MORB, but resembles the depleted mantle source supplying the bulk of the melt to the Kolbeinsey and southern Reykjanes Ridges. However, an additional depleted mantle source is tapped by the northern Reykjanes Ridge, which with very negative Δ207Pb and less positive Δ208Pb is distinct from all Icelandic compositions. These components must mostly mix at mantle depths because a uniform mixture of three Icelandic components is advected southward along the Reykjanes Ridge.Despite strong covariation with isotope ratios, incompatible trace element ratios of Icelandic magmas cannot be representative of old mantle sources. The observed parent-daughter ratios in depleted and enriched Icelandic lavas would yield homogeneous Sr, Nd, Hf and 206Pb isotope signatures ∼170 Ma ago if present in their sources. The heterogeneity in 207Pb/204Pb is not however significantly reduced at 170 Ma, and the negative present day Δ207Pb cannot be supported by the low μ observed in depleted lavas from Iceland or the adjacent ridges. Since μ is higher in melts than in their sources, it follows that all the depleted sources must be residues from <170 Ma partial melting events. These are thought to have strongly affected most incompatible trace element ratios.  相似文献   

20.
Lead isotopes are a powerful and versatile tool to elucidate fundamental geological problems related to the formation and evolution of continental crust. K-feldspar is a popular target for Pb isotope measurement as it is prevalent in many rock types and tends to capture the initial Pb isotope composition of its parental magma. We present data for a new Pb isotope reference material: Albany K-feldspar; as well as updated data for Shap K-feldspar. Results of Pb double-spike TIMS for Albany K-feldspar are 206Pb/204Pb = 16.7872 ± 0.0062, 207Pb/204Pb = 15.5640 ± 0.0056, and 208Pb/204Pb = 36.6600 ± 0.0168 (2s). TIMS measurement results for Shap K-feldspar indicate two isotopically distinct Pb populations. LA-MC-ICP-MS, with a spatial resolution as high as 15 μm, indicates a homogeneous Pb isotopic composition in Albany K-feldspar. In accord with previous studies, our results show that scatter in the measured Pb isotope ratios, related to the low natural isotopic abundance of 204Pb, along with the effect of isobaric 204Hg-204Pb interference, increases at lower count rates. However, the mean Pb isotope ratios measured via LA-MC-ICP-MS using a range of spot sizes are in excellent agreement with TIMS results thus highlighting the feasibility of Pb isotope determination via LA-MC-ICP-MS to access geological information preserved in small crystals, including mineral inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号