首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Domino-style and nearly parallel. The cumulative length and displacement of the faults obey power-law distribution. The fractal dimension of the fault traces is -1.49. Using the multi-line one-dimensional sampling, the calculated exponent of cumulative fault displacements is -0.66. A cumulative curve combining measurements of all four sections yielded a slope of -0.63. The displacement-length plot shows a non-linear relationship and large dispersion of data. The large dispersion in the plot is mainly due to the fault linkage during faulting. An estimation of extensional strain due to the normal faults is ca. 0.1830.The bed extension strain is always less than or equal to the horizontal extension strain. The deformation in the Sierra de San Miguelito occurred near the surface, producing pervasive faults and many faults are too small to appear in maps and sections at common scales. The stretching produced by small faults reach ca. 33% of the total horizontal elongation.  相似文献   

2.
Understanding the roles of Cenozoic strike-slip faults in SE Asia observed in outcrop onshore, with their offshore continuation has produced a variety of structural models (particularly pull-apart vs. oblique extension, escape tectonics vs. slab-pull-driven extension) to explain their relationships to sedimentary basins. Key problems with interpreting the offshore significance of major strike-slip faults are: (1) reconciling conflicting palaeomagnetic data, (2) discriminating extensional, and oblique-extensional fault geometries from strike-slip geometries on 2D seismic reflection data, and (3) estimating strike-slip displacements from seismic reflection data.Focus on basic strike-slip fault geometries such as restraining vs. releasing bends, and strongly splaying geometries approach the gulfs of Thailand and Tonkin, suggest major strike-slip faults probably do not extend far offshore Splays covering areas 10,000’s km2 in extent are characteristic of the southern portions of the Sagaing, Mae Ping, Three Pagodas and Ailao Shan-Red River faults, and are indicative of major faults dying out. The areas of the fault tips associated with faults of potentially 100 km+ displacement, scale appropriately with global examples of strike-slip faults on log–log displacement vs. tip area plots. The fault geometries in the Song Hong-Yinggehai Basin are inappropriate for a sinistral pull-apart geometry, and instead the southern fault strands of the Ailao Shan-Red River fault are interpreted to die out within the NW part of the Song Hong-Yinggehai Basin. Hence the fault zone does not transfer displacement onto the South China Seas spreading centre. The strike-slip faults are replaced by more extensional, oblique-extensional fault systems offshore to the south. The Sagaing Fault is also superimposed on an older Paleogene–Early Miocene oblique-extensional rift system. The Sagaing Fault geometry is complex, and one branch of the offshore fault zone transfers displacement onto the Pliocene-Recent Andaman spreading centre, and links with the West Andaman and related faults to form a very large pull-apart basin.  相似文献   

3.
发刊词          下载免费PDF全文
在党的鼓足干勁、力争上游、多次好省地建設社会主义总路線照耀下,全国各項建設事業都处在躍进的高潮中。在这种形势推动下,地質科学事业正以万馬奔騰之势向前發展。“向深山要宝,向地球开战”的口号正响徹祖国的原野和边疆。这种波瀾壯閥的新局面,使我們相信,經过各方面的努力,在不久的將来,埋藏在地下几亿年的矿藏要被唤醒,要听我們使唤,为我們服务。那时,地质工作將会为国家生产建設准备更充足的矿产资源,和为地区开發提供必要的数据,“地质工作落后”的帽子就要丢掉,从而赶上和超过英、美等先进资本主义国家的水平。  相似文献   

4.
Several strike–slip faults at Crackington Haven, UK show evidence of right-lateral movement with tip cracks and dilatational jogs, which have been reactivated by left-lateral strike–slip movement. Evidence for reactivation includes two slickenside striae on a single fault surface, two groups of tip cracks with different orientations and very low displacement gradients or negative (left-lateral) displacements at fault tips.

Evidence for the relative age of the two strike–slip movements is (1) the first formed tip cracks associated with right-lateral slip are deformed, whereas the tip cracks formed during left-lateral slip show no deformation; (2) some of the tip cracks associated with right-lateral movement show left-lateral reactivation; and (3) left-lateral displacement is commonly recorded at the tips of dominantly right-lateral faults.

The orientation of the tip cracks to the main fault is 30–70° clockwise for right-lateral slip, and 20–40° counter-clockwise for left-lateral slip. The structure formed by this process of strike–slip reactivation is termed a “tree structure” because it is similar to a tree with branches. The angular difference between these two groups of tip cracks could be interpreted as due to different stress distribution (e.g., transtensional/transpressional, near-field or far-field stress), different fracture modes or fractures utilizing pre-existing planes of weakness.

Most of the dx profiles have similar patterns, which show low or negative displacement at the segment fault tips. Although the dx profiles are complicated by fault segments and reactivation, they provide clear evidence for reactivation. Profiles that experienced two opposite slip movements show various shapes depending on the amount of displacement and the slip sequence. For a larger slip followed by a smaller slip with opposite sense, the profile would be expected to record very low or reverse displacement at fault tips due to late-stage tip propagation. Whereas for a smaller slip followed by larger slip with opposite sense, the dx profile would be flatter with no reverse displacement at the tips. Reactivation also decreases the ratio of dmax/L since for an original right-lateral fault, left lateral reactivation will reduce the net displacement (dmax) along a fault and increase the fault length (L).

Finally we compare Crackington Haven faults with these in the Atacama system of northern Chile. The Salar Grande Fault (SGF) formed as a left-lateral fault with large displacement in its central region. Later right-lateral reactivation is preserved at the fault tips and at the smaller sub-parallel Cerro Chuculay Fault. These faults resemble those seen at Crackington Haven.  相似文献   


5.
Tectonic pseudotachylytes might be used to constrain earthquake source parameters, such as dynamic shear stress resistance, average dynamic friction and slip-weakening distance. Estimation of dynamic shear stress resistance and dynamic friction from field studies is based on the assumption that the volume of melt produced during coseismic slip is proportional to the frictional work converted to heat on the fault surface. Conditions conducive to a realistic estimate of dynamic shear resistance are: (i) the presence of large outcrop exposures that allow for estimation of the volume of pseudotachylyte; (ii) the presence of structural markers offset by faults in order to relate the displacement accommodated by the fault with the volume of melt produced; (iii) data that provide an estimate of the initial melt temperature; and (iv) determination of host-rock temperature and pressure conditions that may have existed during seismic faulting. An independent indication that steady-state friction in the presence of melts might be achieved during coseismic slip arises from the dependence of the fractal dimension of the fault profile (intersection of the fault surface with the outcrop surface) with displacement. This relation could also indicate the slip-weakening distance (Hirose, T., Shimamoto, T., 2003. Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. Journal of Structural Geology 25, 1569–1574).The above conditions are all satisfied in the case of the Gole Larghe Fault Zone, which consists of hundreds subparallel strike-slip faults that cut tonalites of the Adamello batholith (Italy). The thickness of pseudotachylyte-bearing faults increases with displacement. From displacement/thickness ratios and energy balance calculations, we determined the dynamic shear resistance for several pseudotachylyte-bearing faults. In the same faults, the fractal dimension of the fault profile increases from 1.0 to 1.16 with displacement. This was also observed in experiments where steady-state friction in the presence of melt was achieved (Hirose, T., Shimamoto, T., 2003. Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. Journal of Structural Geology 25, 1569–1574). However, we will show that the estimate of the dynamic shear stress resistance, average dynamic friction and slip-weakening distance in the studied faults is limited by the uncertainties to attribute the measured displacement to a single seismic rupture. Since many pseudotachylytes in the upper seismogenic crust overprint preexisting cataclasites, it is suggested that future field and experimental work should be addressed to determine microstructural indicators (i.e. evolution of cataclastic fabric with displacement) within cataclasites, which might constrain the contribution of the cataclastic, pre-pseudotachylyte displacement to the total displacement accommodated by the fault.  相似文献   

6.
Displacement profiles (normalized displacement vs normalized distance from the point of maximum displacement) have been plotted for 34 horizontal radii from 25 normal faults with maximum displacements ranging from 1.0 to 37.5 m. The composite displacement profile for these faults, when corrected for systematic inaccuracies of the data, is significantly different from the theoretical slip profile for a single seismic slip event. The integration of slip displacement profiles of many slip events on a growing fault shows that a steady-state displacement profile will be established. This theoretical displacement profile is similar to the composite profile derived from the fault data. Analysis of displacement data from 488 fault traces, which do not necessarily pass through the point of maximum displacement of their respective faults, shows that although displacement measurements are strongly influenced by ductile drag the theoretical distribution can still be identified in the data. Although the slip distribution on a fault during a single slip event, or during a period of stable sliding, is not simply related to the distribution of cumulative displacement on the fault, a knowledge of both characteristics places firm constraints on fault growth models.  相似文献   

7.
We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128–308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw.Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault arrays to form two along-strike, NW-SE striking fault assemblages, and; [4] termination of fault growth in the latest Maastrichtian. We document high variability of throw along-strike and down-dip for both fault assemblages, thereby providing evidence for lateral and vertical segment linkage. Our results highlight the complexities involved in the growth of both gravity-driven normal fault arrays (such as those present in the Niger Delta and Gulf of Mexico) and basement-linked normal fault arrays (such as those present in the North Sea and Suez Rift) with the interaction of an underlying and reactivating basement framework. This study provides an excellent example of spatial variability in growth of two normal fault assemblages over relatively short spatial scales (∼2 km separation down-dip).  相似文献   

8.
塔中北斜坡奥陶系碳酸盐岩的储层改造和油气分布,都受到走滑断裂的影响。由于区域内较大规模的走滑断裂均表现为北东向,水平断距较小,使得利用地震资料直接计算断距时存在着较大的困难。实际上,走滑断裂还普遍表现出北西向拉张特征,并沿断裂走向形成了宽度不同的拉分区域。断裂多沿北东向平直延伸,表明这些拉分区域的宽度和高度主要是受局部应力作用而形成的。这些拉分区域的宽度和高度在三维地震资料中较容易识别。根据断裂的拉分特征,提出通过计算拉分区域的宽度和高度间接识别走滑断裂的断距的方法。断距计算结果符合走滑断裂发育的地质规律,断距较大处是走滑断裂活动性较强的区域,同时也是储层改造作用强烈和油气分布较好的区域。  相似文献   

9.
运用丰富的三维地震资料, 在断裂体系静态刻画与动态分析的基础上, 分析珠一坳陷新生代断裂发育的时空差异性, 并就断裂转型机制进行探讨.结果表明: 断裂体系发育差异性及转型受控于不同区域动力学背景及岩石圈的差异伸展机制.裂陷期(E2w-E2e), 控盆断裂由始新世的北北东、北东-北东东向向近东西、北西西向转变, 岩石圈伸展作用由宽裂谷方式向窄裂谷方式转变以及由陆(北)向海(南)的迁移, 造成了断裂活动北强南弱及其向北扩展, 推测是因为印支地块的旋转挤出和古南海的俯冲导致区域应力场由北西向顺时针转变为近南北向拉张, 进而产生了断裂的幕式特征变化; 裂后拗陷期(E3z-N1z-N1h), 断裂活动微弱, 推测与岩石圈伸展中心逐渐向南迁移至南海扩张中心, 南海北部陆缘整体处于裂后沉降阶段有关; 构造活化期(N1y-N2w-Q), 先期北西西向、近东西向控盆断裂复活, 近东西、北东和北西向走滑断裂形成, 推测与弧-陆碰撞作用产生的北东东向右旋走滑作用有关.现今断裂体系特征体现了多期构造运动的叠加效应, 明确断裂发育的时空差异性对于珠一坳陷油气勘探具有重要指导意义.  相似文献   

10.
In the north-western Bonaparte Basin (North West Shelf of Australia) Neogene to Recent flexure-induced extension superimposed obliquely over the Mesozoic rift structures. Thus, the area offers a good opportunity to investigate the dynamics and architecture of oblique extension fault systems. Analysis of basin-scale 2D and 3D seismic data along the Vulcan sub-basin shows that Neogene deformation produced a new set of extensional, en échelon faults, at places accompanied by the reactivation of the Mesozoic faults. The pre-existing Mesozoic structures strongly control the distribution of the Neogene-Recent deformation, both at regional and local scales. Main controls on the Neogene-Recent fault style, density and segmentation/linkage include: (1) the orientation of the underlying Mesozoic structures, (2) the obliqueness of the younger extension relative to the rift-inherited faults, and (3) the proximity to the Timor Trough. Three types of vertical relationships have been observed between Mesozoic and Neogene-Recent faults. Hard linkages seems to develop when both fault systems trend parallel, therefore increasing risks for trap integrity. It is suggested that the orientation of maximum horizontal stress (SHmax) relative to the Mesozoic faults, forming hydrocarbon traps, is critical for their potential seal/leak behaviour. Stratigraphic growth across the faults indicates that main fault activity occurred during the Plio-Pleistocene, which corresponds to the timing of tectonic loading on Timor Island and the development of lithospheric flexure. Synchronism of normal faulting with flexural bending suggests that extensional deformation on the descending Australian margin accompanied the formation of the Timor Trough.  相似文献   

11.
The Schlinig fault at the western border of theÖtztal nappe (Eastern Alps), previously interpreted as a west-directed thrust, actually represents a Late Cretaceous, top-SE to -ESE normal fault, as indicated by sense-of-shear criteria found within cataclasites and greenschist-facies mylonites. Normal faulting postdated and offset an earlier, Cretaceous-age, west-directed thrust at the base of theÖtztal nappe. Shape fabric and crystallographic preferred orientation in completely recrystallized quartz layers in a mylonite from the Schlinig fault record a combination of (1) top-east-southeast simple shear during Late Cretaceous normal faulting, and (2) later north-northeast-directed shortening during the Early Tertiary, also recorded by open folds on the outcrop and map scale. Offset of the basal thrust of theÖtztal nappe across the Schlinig fault indicates a normal displacement of 17 km. The fault was initiated with a dip angle of 10° to 15° (low-angle normal fault). Domino-style extension of the competent Late Triassic Hauptdolomit in the footwall was kinematically linked to normal faulting.

The Schlinig fault belongs to a system of east- to southeast-dipping normal faults which accommodated severe stretching of the Alpine orogen during the Late Cretaceous. The slip direction of extensional faults often parallels the direction of earlier thrusting (top-W to top-NW), only the slip sense is reversed and the normal faults are slightly steeper than the thrusts. In the western Austroalpine nappes, extension started at about 80 Ma and was coeval with subduction of Piemont-Ligurian oceanic lithosphere and continental fragments farther west. The extensional episode led to the formation of Austroalpine Gosau basins with fluviatile to deep-marine sediments. West-directed rollback of an east-dipping Piemont-Ligurian subduction zone is proposed to have caused this stretching in the upper plate.  相似文献   


12.
Displacement analyses along thrust faults of different maturity (or size) reveal maxima and minima, often associated with minor folding of the adjacent beds, between the tip points. The results show that these faults are segmented, and that they formed through the linkage of smaller (previously independent) faults, and (or) by propagation of a single fault affected by the existence of barriers. Points of potential linkage (marked by displacement minima) are fault bends or distinct fault breaks. Fault nucleation (marked by displacement maxima) occurs within the planar segments of a fault; only in one of eight examples is the nucleation point seen to occur at a fault bend.Displacement variations along inferred or extrapolated regional-scale thrust faults show a variety of patterns, most of which involve constant displacement or a monotonic increase or decrease away from the basal décollement. These data are not considered to be as reliable as those from observed thrusts due to the necessary subjectivity involved in the extrapolation process.In general, displacement variation appears to be a reflection of the symmetry of the thrust fault system, such that, for example, a flat-ramp geometry ending in a steep tip will show an asymmetrical displacement function skewed toward the surface, with a nucleation point above the basal décollement.  相似文献   

13.
确定裂陷盆地伸展量的分数维法   总被引:1,自引:0,他引:1  
脆性断层群落的位移具有分数维牲特征,此特征可以用于建立一种裂陷盆地伸估算的新方法,即分数维法。这种方法可以用于在地震反射剖面上不可的小型断层之寂滑移造成的伸展量大小,计算结果可以约合不同计算方法之间的差异,阐明小型断层在区域裂陷作用变形过程听重要意义。以二连断陷盆地群伸展量的确定为例,详细地介绍了这种方法的使用原理和步骤。  相似文献   

14.
Displacement, length and linkage of deformation bands have been studied in Jurassic sandstones in southeastern Utah. Isolated deformation bands with lengths (L) that span more than three orders of magnitude show similar displacement (D) profiles with more or less centrally located maxima and gently increasing gradient toward the tips. Soft- and hard-linked examples exhibit steeper displacement gradients near overlap zones and immature hard links, similar to previously described fault populations. The deformation band population shows power-law length and displacement distributions, but with lower exponents than commonly observed for populations of larger faults or small faults with distinct slip surfaces. Similarly, the Dmax-L relationship of the deformation bands shows a well-defined exponent of ca 0.5, whereas the general disagreement for other fault populations is whether the exponent is 1 or 1.5. We suggest that this important difference in scaling law between deformation bands and other faults has to do with the lack of well-developed slip surfaces in deformation bands. During growth, deformation bands link to form zones of densely spaced bands, and a slip surface is eventually formed (when 100 m < L < 1 km). The growth and scaling relationship for the resulting populations of faults (slip surfaces) is expected to be similar to ‘ordinary’ fault populations. A change in the Dmax-L scaling relationship at the point when zones of deformation bands develop slip surfaces is expected to be a general feature in porous sandstones where faults with slip surfaces develop from deformation bands. Down-scaling of ordinary fault populations into the size domain of deformation bands in porous sandstones is therefore potentially dangerous.  相似文献   

15.
为了研究含油气盆地中断裂对油气成藏与分布的控制作用,在断层侧向封闭机理及影响因素研究的基础上,对反向断裂下盘较顺向断裂上盘更易富集油气的机理进行了定量解释。结果表明,无论是反向断裂还是顺向断裂,均源于断层岩封闭油气,断层岩油气运移方向排替压力是影响其侧向封闭油气能力的主要因素。在断裂埋深、断裂倾角和地层岩性、地层倾角相同的条件下,理论上反向断裂断层岩泥质体积分数大于顺向断裂断层岩泥质体积分数,即反向断裂断层岩油气运移方向排替压力大于顺向断裂断层岩油气运移方向排替压力,反向断裂侧向封闭能力强于顺向断裂侧向封闭能力,造成反向断裂下盘较顺向断裂上盘更易富集油气。歧口凹陷板桥断裂下盘沙一段下部断层岩在反向条件和顺向条件下油气运移方向排替压力的实例研究结果表明,反向条件下较顺向条件下在油气运移方向有更高的排替压力,侧向封闭能力更强,更有利于油气在板桥断裂下盘沙一段储层中富集。  相似文献   

16.
The geometry and evolution of vertically segmented normal faults, with dip separations of < ca 11.5 m have been studied in a coastal outcrop of finely bedded Cretaceous chalk at Flamborough Head, U.K. Fault trace segments are separated by both contractional and extensional offsets which have step, overlap or bend geometries. The location of fault trace offsets is strongly controlled by lithology occurring at either thin (ca 1 mm-8 cm) and mechanically weak marl layers or partings between chalk units. Fault segmentation occurred during either fault nucleation within, or propagation through, the strongly anisotropic lithological sequence. An inverse relationship between fault displacement and number of offsets per length of fault trace reflects the progressive destruction of offsets during fault growth. The preservation of fault offsets is therefore dependent on offset width and fault displacement. Fault rock, comprising gouge and chalk breccia, may vary in thickness by 1.5–2.0 orders of magnitude on individual fault traces. Strongly heterogeneous fault rock distributions are most common on small faults (< 10 cm displacement) and are produced mainly by destruction of fault offsets. Shearing of fault rock with increasing displacement gives rise to a more homogeneous fault rock distribution on large faults at the outcrop scale.  相似文献   

17.
A displacement history and slip rates were determined for the Reelfoot fault in the New Madrid seismic zone from a seismic reflection profile and trench data. Based on calculations from the seismic reflection line the average slip rate over the last 80 million years is 0.0009 mm year−1. Slip rate during the Late Cretaceous was 0.0007 mm year−1, 0.002 mm year−1 during the Paleocene Midway Group, 0.001 mm year−1 during Paleocene–Eocene Wilcox Formation time, 0.0003 mm year−1 during the post-Wilcox/pre-Holocene period, and a Holocene slip rate of 1.8 mm year−1. Based on trench data, slip rate on the Reelfoot fault has been 4.4 mm year−1 over the last 2400 years and a maximum of 6.2 mm year−1 during the two most recent earthquake cycles between AD 900 and AD 1812. The Holocene slip rate is at least four orders of magnitude higher than the average Late Cretaceous and Cenozoic slip rates for the Reelfoot fault. It would appear that there has been a Quaternary change in the stress field in the central United States or the Reelfoot fault is experiencing a short-lived burst of seismic activity.  相似文献   

18.
塔里木盆地西南坳陷发现晚新生代伸展构造   总被引:1,自引:0,他引:1       下载免费PDF全文
通过认真、系统的地震资料解释, 我们在塔里木盆地西南坳陷首次发现晚新生代正断层。 这些正断层发育于西南坳陷的东北部, 走向 NE-SW, 剖面上组合成堑垒构造, 个别剖面上显示负花状构造特征。 正断层主要发育于新生界, 向上断至的最高层位是第四系更新统下部。 倾向相反的正断层向下交汇后断距消失, 断层继续向下延伸的情况不清楚。 根据断距 变化和生长指数计算, 正断层形成于上新世晚期, 持续演化至更新世早期。 正断层的形成演化过程与以往在阿瓦提凹陷、巴楚隆起和塘沽孜巴斯坳陷发现的晚新生代正断层基本一致, 正断层活动时间为 ca. 3~2 Ma。 它们形成于一个区域性弱伸展构造应力场, 代表印度-亚洲碰撞远程效应下, 塔里木盆地脉式挤压冲断过程中的一个构造间歇期。  相似文献   

19.
The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh–Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X–X′, T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment (M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.  相似文献   

20.
位于扬子板块西南缘的右江盆地是我国卡林型金矿的集中分布区之一,素有滇-黔-桂"金三角"之称.泥堡金矿是右江盆地西北侧一个大型矿床,矿区构造主要有NEE向泥堡背斜、二龙抢宝背斜和同方向的F1、F3、F4、F5和F9断层,以及产于F1断层下盘的层间破碎带等.详细构造调查和新近勘查资料的综合研究表明:F1、F5和F9为逆冲断...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号