首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al2SiO5 reaction textures in aluminous schist and quartziteof the northern Picuris range, north-central New Mexico, recorda paragenetic sequence of kyanite to sillimanite to andalusite,consistent with a clockwise PT loop, with minor decompressionnear the Al2SiO5 triple-point. Peak metamorphic temperaturesare estimated at 510–525°C, at 4·0–4·2kbar. Kyanite and fibrolite are strongly deformed; some prismaticsillimanite, and all andalusite are relatively undeformed. Monaziteoccurs as inclusions within kyanite, mats of sillimanite andcentimetre-scale porphyroblasts of andalusite, and is typicallyaligned subparallel to the dominant regional foliation (S0/S1or S2) and extension lineation (L1). Back-scatter electron imagesand X-ray maps of monazite reveal distinct core, intermediateand rim compositional domains. Monazite–xenotime thermometryfrom the intermediate and rim domains yields temperatures of405–470°C (±50°C) and 500–520°C(±50°C), respectively, consistent with the progradeto peak metamorphic growth of monazite. In situ, ion microprobeanalyses from five monazites yield an upper intercept age of1417 ± 9 Ma. Near-concordant to concordant analyses yield207Pb–206Pb ages from 1434 ± 12 Ma (core) to 1390± 20 Ma (rim). We find no evidence of older regionalmetamorphism related to the 1650 Ma Mazatzal Orogeny. KEY WORDS: Al2SiO5; metamorphism; monazite; thermochronometry; triple-point  相似文献   

2.
Experiments defining the distribution of H2O [Dw = wt % H2O(melt)/wt% H2O(crd)]) between granitic melt and coexisting cordieriteover a range of melt H2O contents from saturated (i.e. coexistingcordierite + melt + vapour) to highly undersaturated (cordierite+ melt) have been conducted at 3–7 kbar and 800–1000°C.H2O contents in cordierites and granitic melts were determinedusing secondary ion mass spectrometry (SIMS). For H2O vapour-saturatedconditions Dw ranges from 4·3 to 7 and increases withrising temperature. When the system is volatile undersaturatedDw decreases to minimum values of 2·6–5·0at moderate to low cordierite H2O contents (0·6–1·1wt %). At very low aH2O, cordierite contains less than 0·2–0·3wt % H2O and Dw increases sharply. The Dw results are consistentwith melt H2O solubility models in which aH2O is proportionalto Xw2 (where Xw is the mole fraction of H2O in eight-oxygenunit melt) at Xw  相似文献   

3.
Synthesis and Stability Relations of Epidote, Ca2Al2FeSi3O12 (OH)   总被引:2,自引:0,他引:2  
LIOU  J. G. 《Journal of Petrology》1973,14(3):381-413
Hydrothermal investigation of the bulk composition 2CaO·Al2O3·l/2Fe2O2·3SiO2+excessH2O (Ps 33 +excess H2O) has been conducted using conventionalapparatus and solid oxygen buffer techniques. Coarse-grainedepidotes (over 150 microns in some cases) were readily synthesizedfrom oxide mixtures with a 98 per cent yield as well as fromtheir high temperature equivalents at 600–700 °C and5 kb Pfluid and over a range of oxygen fugacities. Electronmicroprobe analyses show that maximum Fe+3 content of syntheticepidotes varies as a function of fo2. Epidote is most iron-rich(Ps 33 ± 2) at high (HM and CCO) oxygen buffers and becomesprogressively more aluminous (Ps 25 ± 3) with decreasingfo2 values and temperatures. Such variation is consistent withthe change of refractive indices and cell dimensions. The meanrefractive indices and cell dimensions for synthetic epidote(Ps 33) are N = 1.745 ± 0.005, N = l.786±0.005,a = 8.920±0.005 Å, b = 5.645±0.004 Å,c = 10.190 ű0.006 Å, and ß = 115°31'±4' and for epidote (Ps 25) are N = 1.735±0.005,N = 1.775±0.005, a = 8.891±0.005 Å, b =5.625±0.004 Å, c = 10.177±0.006 Å,and ß = 115° 30'±3'. Mössbauer spectraindicate synthetic epidotes are relatively disordered. Garnets of intermediate composition in the grossular-andraditeseries were synthesized and the cell dimensions and refractiveindices vary linearly with composition. With successive decreasein fo2, garnet synthesized on the Ps 33 bulk composition movestoward the grossular end member with simultaneously increasingalmandine component; concomitantly the hercynite component ofthe coexistent magnetite increases. The fo2-T-Pfluid relations were determined by employing mineralmixtures of synthetic epidote and its high temperature equivalentin subequal proportions. Equilibrium was demonstrated for thereactions (1) epidote (Ps 33) = anorthite+grandite+FeOx+quartz+ fluid, and (2) epidote (Ps 25) (+quartz) = garnet38+anorthite+magnetitc+fluid.With fo2 defined by the HM buffer, epidote (Ps 33) is stableup to 748 °C, 5 kb, 678 °C, 3 kb, and 635 °C, 2kb Pfluid. With fo2 defined by the NNO buffer, the epidote (Ps25) high temperature stability limit is reduced about 100 °Cat 5kb Pfluid. At slightly lower fo2, than defined by the QFMbuffer, epidote is not stable at any temperatures; the assemblagehedenbergite+anorthite+garnet38+fluid replaces epidote in thepresence of excess quartz. Combined with previously determined equilibria for prehnite,andradite, and hedenbergite, isobaric fo,-T relations were furtherinvestigated by chemographic analysis interrelating the phasesprehnite, epidote, grandite, hedenbergite, wollastonite, anorthite,and magnetite in the system CaO-Fe2O3-Al2O3-SiO2-H20. Such analysisallowed the construction of a semi-quantitative petrogeneticgrid applicable to natural parageneses in low µCO2 environments,and the delineation of the low temperature stability limit ofepidote as a function of fo2. Enlargement of the epidote stabilityrange toward both high and low temperatures with increasingfo2, is consistent with widespread occurrences of epidote inlow- and mediumgrade metamorphic rocks.  相似文献   

4.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

5.
The reaction 2 zoisite + CO2 = 3 anorthite + calcite + H2O hasbeen reversed experimentally in cold-seal pressure vessels usingnatural phases and H2O–C02 fluids generated by water-silveroxalate mixtures. Equilibrium has been determined at 5000 50bars, 599 9 °C and 0–075 ± 0–010 XCO2.Extrapolation using the MRK equation of Kerrick & Jacobs(1981) gives an equilibrium curve of negative T–X slopeconsistent with bracketing runs at 500, 550 and 650 °C.The curve agrees only with a new bracket of Nitsch (in Hoschek,1980), and is at higher XCo2 than all other experimental determinationsand at lower XCO2 than those calculated from the thermodynamicdata of Helgeson et al. (1978). Discrepancies are attributedto differences in starting materials and small errors in thethermodynamic properties of the phases. Reaction direction and equilibrium have been determined by observingsurface textures of run products by SEM. Growth and solutiontextures are non-equivalent, permitting unequivocal determinationof reaction direction even where the extent of reaction is small,an advantage over conventional and insensitive XRD methods whichmeasure bulk changes in the charge. Dissolution features ofanorthite and zoisite are defect-related indicating controlby surface reaction, whereas calcite dissolves by both surfacereaction and diffusion controlled processes. Margarite forms in most runs below 585 °C. Textural features,its restriction to the margarite stability field and comparisonwith feldspar solubility data demonstrate it is an equilibriumphase formed by incongruent solubility of anorthite and zoisitein H2O-CO2 fluids. Quench phases formed from the solute areconsequently silica-rich, with implications for metasomaticprocesses in feldspar–epidote–bearing rock and fluidsystems. Absence of margarite from runs with anorthite, zoisiteand calcite in the zoisite stability field is apparently dueto the fast growth rate of zoisite. The full equilibrium assemblageis zoisite–anorthite–calcite–margarite atthese temperatures, and the degeneracy of the model system isunobtainable in experiments, and presumably, in nature.  相似文献   

6.
The early augite syenite unit in the 1·13-Ga-old Ilímaussaqintrusive complex, South Greenland, consists of a magmatic assemblageof ternary alkali feldspar + fayalitic olivine + augite + titanomagnetite+ apatite + baddeleyite ± nepheline ± quartz ±ilmenite ± zircon. Feldspar, nepheline and QUILF thermometryyield T = 1000–700°C, at P = 1 kbar, which is derivedfrom fluid inclusion data from other parts of the complex. Ternaryfeldspar was the first major liquidus phase. It crystallizedat temperatures between 950 and 1000°C from a homogeneousmagma with aSiO2 = 0·8 and fO2 about 1·5–2log units below the fayalite–magnetite–quartz (FMQ)buffer. Later, closed system fractionation produced nepheline-bearingassemblages with aSiO2 = 0·4 and log fO2 = FMQ –3 to FMQ – 5. Assimilation of wall rocks produced localvariations of melt composition. Four traverses through the unitwere sampled parallel to the assumed direction of crystallization.They exhibit significant differences in their mineral assemblagesand compositions. The chemical zoning and calculated intensiveparameters of four sample suites reflect both closed systemfractional crystallization and local assimilation of wall rocks. KEY WORDS: alkaline magmatism; assimilation; fractionation; redox equilibria; QUILF  相似文献   

7.
The 456 ± 4 Ma Skattøra migmatite complex in thenorth Norwegian Caledonides consists of migmatitic nepheline-normativemetagabbros and amphibolites that are net-veined by numerousnepheline-normative anorthositic and leucodioritic dykes. Plagioclase(An20–50) is the dominant mineral (85–100%) in thedykes and the leucosome, but amphibole is generally presentin amounts up to 15%. The following observations strongly suggestformation of the anorthositic magma by anatexis of the surroundinggabbro in the presence of an H2O-bearing fluid phase: (1) themigmatites have plagioclase-rich (anorthositic) leucosomes andamphibole-rich restites; (2) crystallization of amphibole inthe anorthositic and leucodioritic dykes suggests high H2O activity;(3) the presence of coarse-grained to pegmatitic dykes and miaroliticcavities indicates a fluid-rich magma; (4) hydration zones thatsurround many anorthosite dykes suggest that the magma probablyexpelled H2O-rich fluids during crystallization. Water-saturatedmelting experiments at 0·5–1·5 GPa and temperaturesfrom 800 to 1000°C have been performed on a nepheline-normativegabbro to test the proposed petrogenesis of the Skattøraanorthosites. The glasses produced close to the solidus aretonalitic in composition, but they become richer in plagioclaseat higher temperatures. At and below 1·0 GPa, the residuesare composed of amphibole. Experiments above 1·0 GPaproduced residual garnet and/or zoisite in addition to amphibole,suggesting that the anorthositic dykes in the Skattøramigmatite complex formed below 1·25 GPa. The experimentsshow that the high Na2O content of the anorthosite dykes canonly be produced if Na is added to the charges. The glass thatbest fits the composition of the Skattøra dykes was producedat 1·0 GPa and 900°C with 2 wt % Na(OH) added. KEY WORDS: anorthosite; dyke swarm; anatexis; experimental petrology  相似文献   

8.
Scapolite and other halogen-rich minerals (phlogopite, amphibole,apatite, titanite and clinohumite) occur in some high-pressureamphibolite facies calc-silicates and orthopyroxene-bearingrocks at Sare Sang (Sar e Sang or Sar-e-Sang), NE Afghanistan.The calc-silicates are subdivided into two groups: garnet-bearingand garnet-free, phlogopite-bearing. Besides garnet and/or phlogopite,the amphibolite facies mineral assemblages in the calc-silicatesinclude clinopyroxene, calcite, quartz and one or more of theminerals scapolite, plagioclase, K-feldspar, titanite, apatiteand rarely olivine. Orthopyroxene-bearing rocks consist of clinopyroxene,garnet, plagioclase, scapolite, amphibole, quartz, calcite andaccessory dolomite and alumosilicate (kyanite?). Retrogradephases in the rocks are plagioclase, scapolite, calcite, amphibole,sodalite, haüyne, lazurite, biotite, apatite and dolomite.The clinopyroxene is mostly diopside and rarely also hedenbergite.Aegirine and omphacite with a maximum jadeite content of 29mol % were also found. Garnet from the calc-silicates is Grs45–95Py0–2and from the orthopyroxene-bearing rocks is Grs10–15Py36–43.Peak P–T metamorphic conditions, calculated using availableexchange thermobarometers and the TWQ program, are 750°Cand 1·3–1·4 GPa. Depending on the rock type,the scapolite exhibits a wide range of composition (from EqAn= 0·07, XCl =0·99 to EqAn = 0·61, XCl =0·07).Equilibria calculated for scapolite and coexisting phases atpeak metamorphic conditions yield XCO2 = 0·03–0·15.XNaCl (fluid), obtained for scapolite, ranges between 0·04and 0·99. Partitioning of F and Cl between coexistingphases was calculated for apatite–biotite and amphibole–biotite.Fluorapatite is present in calc-silicates, but orthopyroxene-bearingrocks contain chlorapatite. Cl preferentially partitions intoamphibole with respect to biotite. All these rocks have sufferedvarious degrees of retrogression, which resulted in removalof halogens, CO2 and S. Halogen- and S-bearing minerals formedduring retrogression and metasomatism are fluorapatite, sodalite,amphibole, scapolite, clinohumite, haüyne, pyrite, andlazurite, which either form veins or replace earlier formedphases. KEY WORDS: scapolite; fluid composition; high-pressure; amphibolite facies; Western Hindukush; Afghanistan  相似文献   

9.
Biotite + plagioclase + quartz (BPQ) is a common assemblagein gneisses, metasediments and metamorphosed granitic to granodioriticintrusions. Melting experiments on an assemblage consistingof 24 vol. % quartz, 25 vol. % biotite (XMg = 0·38–0·40),42 vol. % plagioclase (An26–29), 9 vol. % alkali feldsparand minor apatite, titanite and epidote were conducted at 10,15 and 20 kbar between 800 and 900°C under fluid-absentconditions and with small amounts (2 and 4 wt %) of water addedto the system. At 10 kbar when 4 wt % of water was added tothe system the biotite melting reaction occurred below 800°Cand produced garnet + amphibole + melt. At 15 kbar the meltingreaction produced garnet + amphibole + melt with 2 wt % addedwater. At 20 kbar the amphibole occurred only at high temperature(900°C) and with 4 wt % added water. In this last case themelting reaction produced amphibole + clinopyroxene ±garnet + melt. Under fluid-absent conditions the melting reactionproduced garnet + plagioclase II + melt and left behind a plagioclaseI ± quartz residuum, with an increase in the modal amountof garnet with increasing pressure. The results show that itis not possible to generate hornblende in such compositionswithout the addition of at least 2–4 wt % H2O. This reflectsthe fact that conditions of low aH2O may prevent hornblendefrom being produced with peraluminous granitic liquids fromthe melting of biotite gneiss. Thus growth of hornblende inanatectic BPQ gneisses is an indication of addition of externalH2O-rich fluids during the partial melting event. KEY WORDS: biotite; dehydration; gneisses; hornblende; melt  相似文献   

10.
Sediment Melts at Sub-arc Depths: an Experimental Study   总被引:14,自引:0,他引:14  
The phase and melting relations in subducted pelites have beeninvestigated experimentally at conditions relevant for slabsat sub-arc depths (T = 600–1050°C, P = 2·5–4·5GPa). The fluid-present experiments produced a dominant paragenesisconsisting of garnet–phengite–clinopyroxene–coesite–kyanitethat coexists with a fluid phase at run conditions. Garnet containsdetectable amounts of Na2O (up to 0·5 wt%), P2O5 (upto 0·56 wt%), and TiO2 (up to 0·9 wt%) in allexperiments. Phengite is stable up to 1000°C at 4·5GPa and is characterized by high TiO2 contents of up to 2 wt%.The solidus has been determined at 700°C, 2·5 GPaand is situated between 700 and 750°C at 3·5 GPa.At 800°C, 4·5 GPa glass was present in the experiments,indicating that at such conditions a hydrous melt is stable.In contrast, at 700°C, 3·5 and 4·5 GPa, asolute-rich, non-quenchable aqueous fluid was present. Thisindicates that the solidus is steeply sloping in PT space.Fluid-present (vapour undersaturated) partial melting of thepelites occurs according to a generalized reaction phengite+ omphacite + coesite + fluid = melt + garnet. The H2O contentof the produced melt decreases with increasing temperature.The K2O content of the melt is buffered by phengite and increaseswith increasing temperature from 2·5 to 10 wt%, whereasNa2O decreases from 7 to 2·3 wt%. Hence, the melt compositionschange from trondhjemitic to granitic with increasing temperature.The K2O/H2O increases strongly as a function of temperatureand nature of the fluid phase. It is 0·0004–0·002in the aqueous fluid, and then increases gradually from about0·1 at 750–800°C to about 1 at 1000°C inthe hydrous melt. This provides evidence that hydrous meltsare needed for efficient extraction of K and other large ionlithophile elements from subducted sediments. Primitive subduction-relatedmagmas typically have K2O/H2O of 0·1–0·4,indicating that hydrous melts rather than aqueous fluids areresponsible for large ion lithophile element transfer in subductionzones and that top-slab temperatures at sub-arc depths are likelyto be 700–900°C. KEY WORDS: experimental petrology; pelite; subduction; UHP metamorphism; fluid; LILE  相似文献   

11.
To model magmatic crystallization processes for mafic to intermediatecompositions at high pressure, liquidus phase relations in theforsterite–anorthite–diopside–silica (FADS)tetrahedron within the CaO–MgO–Al2O3–SiO2system have been determined at 2·0 GPa. Compositionsof five liquidus invariant points have been determined and theapproximate compositions of five others have been inferred.These involve primary phase volumes for forsterite (fo), enstatite(en), diopside (di), high quartz (qz), spinel (sp), sapphirine(sa), garnet (gt), anorthite (an), and corundum (cor). The determined(with wt % coefficients) and inferred reactions (without coefficients)that define each isobaric invariant point are as follows: 23 en + 68 di + 9 sp = 84 liq + 16 fo 37 di + 63 sa = 47 liq + 40 sp + 13 en 100 gt = 21 liq + 27 sa + 55 en + 18 di 1 di + 59 en + 41 an = 43 liq + 57 gt 18 di + 21 qz + 15 en + 47 an = 100 liq di + an + gt = liq + sa an + gt = liq + sa + en sa + an + di = liq + sp sa + an = liq + cor + sp di + cor = liq + an + sp. These phase relations provide a diverse range of constraintson igneous processes at pressures near 2 GPa. They show thatfractional crystallization of a model basalt gives a residualliquid strongly enriched in SiO2, strongly depleted in MgO,and mildly enriched in Al2O3. Such a trend is consistent withthe calc-alkaline fractionation trend observed at subductionzones, but is in disagreement with suggestions that fractionationof tholeiitic basalt in this pressure range yields an alkalicbasalt. Both trends may occur for natural basalts dependingon the Na2O content of the parental magma. Also, the data showthat the minimum pressure for the formation of cumulate eclogitesand garnet pyroxenites is about 1·8–1·9GPa. The lower limit of pressure at which sapphirine can crystallizefrom a liquid in the FADS tetrahedron is estimated to be 1·1–1·5GPa and the upper limit is >3 GPa. Sapphirine crystallizesfrom magmas intermediate in composition between basalt and andesite.Probable igneous sapphirine in mafic associations is rare, butit occurs as part of a pyroxenite xenolith from Delegate, Australia,that we suggest is a cumulate assemblage and in a sapphirinenorite at Wilson Lake, Labrador, Canada. KEY WORDS: basalt; eclogite; sapphirine; fractional crystallization  相似文献   

12.
Experiments in the quartz-saturated part of the system KFMASHunder fO2 conditions of the haematite–magnetite bufferand using bulk compositions with XMg of 0·81, 0·72,0·53 define the stability limits of several mineral assemblageswithin the PT field 9–12 kbar, 850–1100°C.The stability limits of the mineral assemblages orthopyroxene+ spinel + cordierite ± sapphirine, orthopyroxene + garnet+ sapphirine, sapphirine + cordierite + orthopyroxene and garnet+ orthopyroxene + spinel have been delineated on the basis ofPT and T–X pseudosections. Sapphirine did not appearin the bulk composition of XMg = 0·53. A partial petrogeneticgrid applicable to high Mg–Al granulites metamorphosedat high fO2, developed in our earlier work, was extended tohigher pressures. The experimental results were successfullyapplied to several high-grade terranes to estimate PTconditions and retrograde PT trajectories. KEY WORDS: KFMASH equilibria; experimental petrogenetic grid at high fO2  相似文献   

13.
Formation of Carbon and Hydrogen Species in Magmas at Low Oxygen Fugacity   总被引:5,自引:0,他引:5  
Studies of iron-bearing silicate melt (ferrobasalt) + iron metallicphase + graphite + hydrogen equilibria show that carbon andhydrogen solubilities in melts are important for the evolutionof the upper mantle. In a series of experiments conducted at3·7 GPa and 1520–1600°C, we have characterizedthe nature (oxidized vs reduced) and quantified the abundancesof C- and H-compounds dissolved in iron-bearing silicate melts.Experiments were carried out in an anvil-with-hole apparatuspermitting the achievement of equal chemical potentials of H2in the inner Pt capsule and outer furnace assembly. The fO2for silicate melt–iron equilibrium was 2·32 ±0·04 log units below iron–wüstite (IW). Theferrobasalt used as starting material experienced a reductionof its iron oxides and silicate network. The counterpart wasa liberation of oxygen reacting with the hydrogen entering thecapsule. The amount of H2O dissolved in the glasses was measuredby ion microprobe and by step-heating and was found to be between1 and 2 wt %. The dissolved carbon content was found to be 1600ppm C by step-heating. The speciation of C and H componentswas determined by IR and Raman spectroscopy. It was establishedthat the main part of the liberated oxygen was used to formOH and to a much lesser extent H2O, and only traces ofH2, CO2 and  相似文献   

14.
High-pressure–high-temperature experiments were performedin the range 7–15 GPa and 1300–1600°C to investigatethe stability and phase relations of the K- and Ba-dominantmembers of the crichtonite and magnetoplumbite series of phasesin simplified bulk compositions in the systems TiO2–ZrO2–Cr2O3–Fe2O3–BaO–K2Oand TiO2–Cr2O3–Fe2O3–BaO–K2O. Both seriesof phases occur as inclusions in diamond and/or as constituentsof metasomatized peridotite mantle xenoliths sampled by kimberlitesor alkaline lamprophyres. They can accommodate large ion lithophileelements (LILE) and high field strength elements (HFSE) on awt % level and, hence, can critically influence the LILE andHFSE budget of a metasomatized peridotite even if present onlyin trace amounts. The Ba and K end-members of the crichtoniteseries, lindsleyite and mathiasite, are stable to 11 GPa and1500–1600°C. Between 11 and 12 GPa, lindsleyite breaksdown to form two Ba–Cr-titanates of unknown structurethat persist to at least 13 GPa. The high-pressure breakdownproduct of mathiasite is a K–Cr-titanate with an idealizedformula KM7O12, where M = Ti, Cr, Mg, Fe. This phase possessesspace group P63/m with a = 9·175(2) Å, c = 2·879(1)Å, V = 209·9(1) Å3. Towards high temperatures,lindsleyite persists to 1600°C, whereas mathiasite breaksdown between 1500 and 1600°C to form a number of complexTi–Cr-oxides. Ba and K end-members of the magnetoplumbiteseries, hawthorneite and yimengite, are stable in runs at 7,10 and 15 GPa between 1300 and 1400°C coexisting with anumber of Ti–Cr-oxides. Molar mixtures (1:1) of lindsleyite–mathiasiteand hawthorneite–yimengite were studied at 7–10GPa and 1300–1400°C, and 9–15 GPa and 1150–1400°C,respectively. In the system lindsleyite–mathiasite, onehomogeneous Ba–K phase is stable, which shows a systematicincrease in the K/(K + Ba) ratio with increasing pressure. Inthe system hawthorneite–yimengite, two coexisting Ba–Kphases appear, which are Ba rich and Ba poor, respectively.The data obtained from this study suggest that Ba- and K-dominantmembers of the crichtonite and magnetoplumbite series of phasesare potentially stable not only throughout the entire subcontinentallithosphere but also under conditions of an average present-daymantle adiabat in the underlying asthenosphere to a depth ofup to 450 km. At still higher pressures, both K and Ba may remainstored in alkali titanates that would also be eminently suitablefor the transport of other ions with large ionic radii. KEY WORDS: crichtonite; magnetoplumbite; high-PT experiments; phase relations; upper mantle  相似文献   

15.
Phase relations for the bulk compositions 3CaO·2FeOx·3SiO2+excessH2O and CaO·FeOx·2SiO2+excess H2O were determinedusing conventional hydrothermal techniques with solid phaseoxygen buffers to control fO2. Andradite, Ca3Fe3+2Si3O12, synthesized above 550 °C hasan average unit cell edge, ao, of 12.055±0.001 Å,and an index of refraction, n, of 1.887±0.003. Belowthis temperature, ao increases whereas n decreases, indicatingthe formation of a member of the andradite-hydroandradite solidsolution. At 2000 bars Pfluid andradite is stable above an fO2of 1015 bar at 800 °C and 10-32 bar at 400 °C. At lowerfO2 andradite+fluid gives way at successively lower temperaturesto the condensed assemblages magnetite+wollastonite, kirschsteinite(CaFe2+SiO4)+ wollastonite and kirschsteinite+xonotlite (Ca6Si6O17(OH)2). Synthetic hedenbergite, CaFe2+Si2O6, has average unit cell dimensionsof ao = 9.857± 0.004 Å, bo = 9.033±0.002Å, co = 5.254±0.002 Å and ß = 104.82°±0.03°,and refractive indices of n = 1.731±0.003 and n = 1.755±0.005.At 2000 bars Pfiuid, hedenbergite is stable below an fO2 of10-13 bar at 800 °C and 10-28 bar at 400 °C. Above thesefO2 values, hedenbergite+O2 breaks down to andradite+magnetite+quartz. The mineral pair andradite +hedenbergite thus limit the fO2range possible for their joint formation under equilibrium conditions. The hydration of wollastonite to xonotlite occurs at much lowertemperatures than previous experimental work indicated. A tentativehigh temperature limit for this reaction is set at 185°±15°C and 5000±25 bars and 210°±15 °Cand 2000±20 bars. Inasmuch as the growth of xonotlitefrom wollastonite + H2O was never accomplished, this high temperaturelimit does not represent an equilibrium univariant curve. Nine phases were encountered in the study of andradite and hedenbergite.They are andradite, hedenbergite, magnetite, wollastonite, kirschsteinite,xonotlite, quartz, ilvaite, and vapor (fluid). An invariantpoint analysis using the method of Schreinemakers shows thetopologic relations of the reactions involved. The resultinggrid can be used to interpret natural occurrences.  相似文献   

16.
Kistufell: Primitive Melt from the Iceland Mantle Plume   总被引:5,自引:2,他引:5  
This paper presents new geochemical data from Kistufell (64°48'N,17°13'W), a monogenetic table mountain situated directlyabove the inferred locus of the Iceland mantle plume. Kistufellis composed of the most primitive olivine tholeiitic glassesfound in central Iceland (MgO 10·56 wt %, olivine Fo89·7).The glasses are interpreted as near-primary, high-degree plumemelts derived from a heterogeneous mantle source. Mineral, glassand bulk-rock (glass + minerals) chemistry indicates a low averagemelting pressure (15 kbar), high initial crystallization pressuresand temperatures (10–15 kbar and 1270°C), and eruptiontemperatures (1240°C) that are among the highest observedin Iceland. The glasses have trace element signatures (Lan/Ybn<1, Ban/Zrn 0·55–0·58) indicative ofa trace element depleted source, and the Sr–Nd–Pbisotopic ratios (87Sr/86Sr 0·70304–0·70308,143Nd/144Nd 0·513058–0·513099, 206Pb/204Pb18·343–18·361) further suggest a long-termtrace element depletion relative to primordial mantle. HighHe isotopic ratios (15·3–16·8 R/Ra) combinedwith low 207Pb/204Pb (15·42–15·43) suggestthat the mantle source of the magma is different from that ofNorth Atlantic mid-ocean ridge basalt. Negative Pb anomalies,and positive Nb and Ta anomalies indicate that the source includesa recycled, subducted oceanic crustal or mantle component. PositiveSr anomalies (Srn/Ndn = 1·39–1·50) furthersuggest that this recycled source component involves lower oceaniccrustal gabbros. The  相似文献   

17.
The compositions of multiply saturated partial melts are valuablefor the thermodynamic information that they contain, but aredifficult to determine experimentally because they exist onlyover a narrow temperature range at a given pressure. Here wetry a new approach for determining the composition of the partialmelt in equilibrium with olivine, orthopyroxene, clinopyroxeneand spinel (Ol + Opx + Cpx + Sp + Melt) in the system CaO–MgO–Al2O3–SiO2(CMAS) at 1·1 GPa: various amounts of K2O are added tothe system, and the resulting melt compositions and temperatureare extrapolated to zero K2O. The ‘sandwich’ experimentalmethod was used to minimize problems caused by quench modification,and Opx and Cpx were previously synthesized at conditions nearthose of the melting experiments to ensure they had appropriatecompositions. Results were then checked by reversal crystallizationexperiments. The results are in good agreement with previouswork, and establish the anhydrous solidus in CMAS to be at 1320± 10°C at 1·1 GPa. The effect of K2O is todepress the solidus by 5·8°C/wt %, while the meltcomposition becomes increasingly enriched in SiO2, being quartz-normativeabove 4 wt % K2O. Compared with Na2O, K2O has a stronger effectin depressing the solidus and modifying melt compositions. Theisobaric invariant point in the system CMAS–K2O at whichOl + Opx + Cpx + Sp + Melt is joined by sanidine (San) is at1240 ± 10°C. During the course of the study severalother isobaric invariant points were identified and their crystaland melt compositions determined in unreversed experiments:Opx + Cpx + Sp + An + Melt in the system CMAS at 1315 ±10°C; in CMAS–K2O, Opx + Cpx + Sp + An + San + Meltat 1230 ± 10°C and Opx + Sp + An + San + Sapph +Melt at 1230 ± 10°C, where An is anorthite and Sapphis sapphirine. Coexisting San plus An in three experiments helpdefine the An–San solvus at 1230–1250°C. KEY WORDS: feldspar solvus; igneous sapphirine; mantle solidus; partial melting; systems CMAS and CMAS–K2O  相似文献   

18.
The Diahot terrane of NE New Caledonia contains an interbeddedsequence of Cretaceous to Eocene metasediments, felsic and maficmetavolcanics that experienced c. 40 Ma high-P/T metamorphism.Metabasaltic assemblages define two prograde events (M1 andM2) and a tectonically disrupted crustal profile that extendsfrom lawsonite–blueschist conditions in the SW to paragonite–eclogiteconditions in the NE. Weakly deformed metabasalts from lowest-gradeparts of the Diahot terrane contain M1 omphacite, chlorite,lawsonite and glaucophane-bearing assemblages that partiallypseudomorph igneous plagioclase and augite, and reflect P =0·7–1·0 GPa and T = 350–400°C.M1 assemblages are enveloped by a steeply SW-dipping S2 foliationthat becomes progressively more intense towards the NE overa distance of c. 15 km. S2 assemblages are divided into fourzones: (1) lawsonite–omphacite; (2) lawsonite–clinozoisite–spessartine;(3) clinozoisite–hornblende–almandine; (4) almandine–omphacite.S2 assemblages reflect a PT gradient that spans the exposed15 km of the Diahot terrane from P = 0·8–1·0GPa and T = 350–400°C (Zone 1) to P = 1·6–1·7GPa and T = 550–600°C (Zone 4). The systematic mineralogicalchanges reflect parts of a PT array between 1·0and 1·7 GPa that was extensively disrupted by tectonicthinning during exhumation. KEY WORDS: blueschist; eclogite; New Caledonia; CNFMASH; pseudosection  相似文献   

19.
The Puklen complex of the Mid-Proterozoic Gardar Province, SouthGreenland, consists of various silica-saturated to quartz-bearingsyenites, which are intruded by a peralkaline granite. The primarymafic minerals in the syenites are augite ± olivine +Fe–Ti oxide + amphibole. Ternary feldspar thermometryand phase equilibria among mafic silicates yield T = 950–750°C,aSiO2 = 0·7–1 and an fO2 of 1–3 log unitsbelow the fayalite–magnetite–quartz (FMQ) bufferat 1 kbar. In the granites, the primary mafic minerals are ilmeniteand Li-bearing arfvedsonite, which crystallized at temperaturesbelow 750°C and at fO2 values around the FMQ buffer. Inboth rock types, a secondary post-magmatic assemblage overprintsthe primary magmatic phases. In syenites, primary Ca-bearingminerals are replaced by Na-rich minerals such as aegirine–augiteand albite, resulting in the release of Ca. Accordingly, secondaryminerals include ferro-actinolite, (calcite–siderite)ss,titanite and andradite in equilibrium with the Na-rich minerals.Phase equilibria indicate that formation of these minerals tookplace over a long temperature interval from near-magmatic temperaturesdown to  相似文献   

20.
Pelitic xenoliths derived from amphibolite grade basement rocksoccur within a Pleistocene, trachytic, pyroclastic unit of theWehr volcano, East Eifel, West Germany: With increasing temperatureand/or prolonged heating at high temperature, quartz-plagioclaseand micaceous layers of the xenoliths have undergone meltingto form buchites and thermal reconstitution by dehydration reactions,melting and crystallization to form restites respectively. Thexenoliths provide detailed evidence of melting, high temperaturedecomposition of minerals, nucleation and growth of new phasesand P-T-fo2 conditions of contact metamorphism of basement rocksby the Wehr magma. Melting begins at quartz-oligoclase (An17·3Ab82·3Or0·4-An20·0Ab78·1Or1·9)grain boundaries in quartz-plagioclase rich layers and the amountof melting is controlled by H2O and alkalis released duringdehydroxylation/oxidation of associated micas. Initially, glasscompositions are heterogeneous, but with increasing degreesof melting they become more homogeneous and are similar to S-typegranitic minimum melts with SiO2 between 71 and 77 wt. per cent;A/(CNK) ratios of 1·2–1·4; Na2O < 2·95and normative corundum contents of 1·9–4·0per cent. Near micas plagioclase melts by preferential dissolutionof the NaAlSi3O8 component accompanied by a simultaneous increasein CaAl2Si2O8 (up to 20 mol. per cent An higher than the bulkplagioclase composition) at the melting edge. With increasingtemperature the end product of fractional melting is the formationand persistence of refractory bytownite (An78–80) in thosexenoliths where extensive melting has taken place. Initial stage decomposition of muscovite involves dehydroxylation(H2O and alkali loss). At higher temperatures muscovite breaksdown to mullite, sillimanite, corundum, sanidine and a peraluminousmelt. Mullite (40–43 mol. per cent SiO2) and sillimanite(49 mol. per cent SiO2) are Fe2O3 and TiO2 rich (up to 6·1–0·84and 3·6–0·24 wt. per cent respectively).Al-rich mullite (up to 77 wt. per cent Al2O3) occurs with corundumwhich has high Fe2O3 and TiO2 (up to 6·9 and 2·1wt. per cent respectively). Annealing at high temperatures andreducing conditions results in the exsolution of mullite fromsillimanite and ilmenite from corundum. Glass resulting fromthe melting of muscovite in the presence of quartz is peraluminous(A/(CNK) = 1·3) with SiO2 contents of 66–69 percent and normative corundum of 4 per cent. Sanidine (An1·9Ab26·0Or72·1-An1·3Ab15·9Or82·9)crystallized from the melt. Dehydroxylation and oxidation of biotite results in a decreaseof K2O from 8·6 to less than 1 wt. per cent and oxidetotals (less H2O + contents) from 96·5 to 88·6,exsolution of Al-magnetite, and a decrease in the Fe/(Fe + Mg)ratio from 0·41 to 0·17. Partial melting of biotitein the presence of quartz/plagioclase to pleonaste, Al-Ti magnetite,sanidine(An2·0Ab34·9Or63·1) and melt takesplace at higher temperatures. Glass in the vicinity of meltedbiotite is pale brown and highly peraluminous (A/CNK = 2·1)with up to 6 wt. per cent MgO+FeO(total iroq) and up to 10 percent normative corundum. Near liquidus biotite with higher Al2O3and TiO2 than partially melted biotite crystallized from themelt. Ti-rich biotites (up to 6 wt. per cent TiO2) occur withinthe restite layers of thermally reconstituted xenoliths. Meltingof Ti-rich biotite and sillimanite in contact with the siliceousmelt of the buchite parts of xenoliths resulted in the formationof cordierite (100 Mg/(Mg+Fe+Mn) = 76·5–69·4),Al-Ti magnetite and sanidine, and development of cordierite/quartzintergrowths into the buchite melt. Growth of sanidine enclosedrelic Ca-plagioclase to form patchy intergrowths in the restitelayers. Cordierite (100 Mg/(Mg+Fe+Mn) = 64–69), quartz,sillimanite, mullite, magnetite and ilmenite, crystallized fromthe peraluminous buchite melt. Green-brown spinels of the pleonaste-magnetite series have awide compositional variation of (mol. per cent) FeAl2O4—66·6–45·0;MgAl2O4—53·0–18·7; Fe3O4—6·9–28·1;MnAl2O4—1·2–1·5; Fe2TiO4—0·6–6·2.Rims are generally enriched in the Fe3O4 component as a resultof oxidation. Compositions of ilmenite and magnetite (single,homogeneous and composite grains) are highly variable and resultfrom varying degrees of high temperature oxidation that is associatedwith dehydroxylation of micas and melting. Oxidation mainlyresults in increasing Fe3+, Al and decreasing Ti4+, Fe2+ inilmenite, and increasing Fe2+, Ti4+ and decreasing Fe3+ in associatedmagnetite. A higher degree of oxidation is reached with exsolutionof rutile from ilmenite and formation of titanhematite and withexsolution of pleonaste from magnetite. Ti-Al rich magnetite(5·1–7·5 and 8·5–13·5wt. per cent respectively) and ilmenite crystallized from meltsin buchitic parts of the xenoliths. Chemical and mineralogic evidence indicates that even with extensivemelting the primary compositions of individual layers in thexenoliths remained unmodified. Apparently the xenoliths didnot remain long enough at high temperatures for desilicationand enrichment in Al2O3, TiO2, FeO, Fe2O3, and MgO that resultsby removal of a ‘granitic’ melt, and/or by interactionwith the magma, to occur. T °C-fo2 values calculated from unoxidized magnetite/ilmenitegive temperatures ranging from 615–710°C for contactmetamorphism and the beginning of melting, and between 873 and1054°C for the crystallization of oxides and mullite/sillimanitefrom high temperature peraluminous melts. fo2 values of metamorphismand melting were between the Ni-NiO and Fe2O3-Fe3O4 buffer curves.The relative abundance of xenolith types, geophysical evidenceand contact metamorphic mineralogy indicates that the xenolithswere derived from depths corresponding to between 2–3kb Pload = Pfluid. The xenoliths were erupted during the latestphreatomagmatic eruption from the Wehr volcano which resultedin vesiculation of melts in partially molten xenoliths causingfragmentation and disorientation of solid restite layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号