首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Ryuji Ikeda 《Island Arc》2001,10(3-4):199-205
Abstract Three boreholes, 1001 m, 1313 m and 1838 m deep, were drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) in the vicinity of the epicenter of the 1995 Hyogo-ken Nanbu (Kobe) earthquake to investigate tectonic and material characteristics near and in active faults. Using these boreholes, an integrated study of the in situ stress, heat flow, and material properties of drill cores and crustal resistivity was conducted. In particular, the Nojima–Hirabayashi borehole was drilled to a depth of 1838 m and directly intersected the Nojima Fault, and three possible fault strands were detected at depths of 1140 m, 1313 m and 1800 m. Major results obtained from this study include the following: (i) shear stress around the fault zone is very small, and the orientation of the maximum horizontal compression is perpendicular to the surface trace of faults; (ii) from the results of a heat flow study, the lower cut-off depth of the aftershocks was estimated to be roughly 300°C; (iii) cores were classified into five types of fault rocks, and an asymmetric distribution pattern of these fault rocks in the fracture zones was identified; (iv) country rock is characterized by a very low permeability and high strength; and (v) resistivity structure can be explained by a model of a fault extending to greater depths but with low resistivity.  相似文献   

2.
Abstract The 1995 Hyogo-ken Nanbu (Kobe) earthquake, M 7.2, occurred along the north-east–south-west trending Rokko–Awaji Fault system. Three boreholes of 1001 m, 1313 m and 1838 m deep were drilled in the vicinity of the epicenter of the earthquake. Each borehole is located at characteristic sites in relation to active faults and the aftershock distribution. In particular, the Nojima–Hirabayashi borehole [Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drilling] in Awaji Island was drilled to a depth of 1838 m, approximately 320 m southeast from the surface rupture of the Nojima Fault, and it crosses fracture zones below a depth of 1140 m. In situ stress measurements by the hydraulic fracturing method were conducted in these boreholes within 1.5 years after the earthquake. Measurement results suggest the following: (i) Differential stress values are very small, approximately 10 MPa at a depth of 1000 m at each site; (ii) the orientation of maximum horizontal compression is almost the same in the boreholes, perpendicular to the surface trace of the faults, north-west–south-east; (iii) fault types estimated from the state of stress differ among these sites; and (iv) the differential stress value just beneath the fault fracture zone decreases abruptly to one-half of that above the fault zone in the Hirabayashi NIED drilling. These features support the idea that the shear stress along the Rokko–Awaji Fault system decreased to a low level just after the earthquake.  相似文献   

3.
Abstract Electron spin resonance (ESR) analyses of quartz grains in fault gouge were performed for a core sample taken from the Nojima Fault that moved during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake). Distribution of radiation-induced defects in the gouge at a depth of 389.4 m was measured by extracting quartz grains from seven discrete positions within 30 mm of the fault plane on the granite side. The decrease in E'1 and Al centers was observed within 2 mm of the fault plane, suggesting partial annealing due to faulting. Partial annealing even at that depth suggested that conventional ESR dating, which is based on the hypothesis of complete annealing during faulting, was not applicable. Theoretical calculations of the temperature rise and of the thermal annealing of defects have been made by assuming a simple annealing model of heat generation on the fault plane. Thermal energy was calculated to have been approximately 8 MJ/m2 to explain the profile of the heat-affected region. Thermal energy was much larger than the one estimated from hydrothermal solution, and corresponded to the frictional heat calculated for a normal stress of 20 MPa, a displacement of 2 m, and a frictional coefficient of 0.2.  相似文献   

4.
Abstract To better understand heat generation and transfer along earthquake faults, this paper presents preliminary zircon fission-track (FT) length data from the Nojima Fault, Awaji Island, Japan, which was activated during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake). Samples were collected of Cretaceous granitic rocks from the Ogura 500 m borehole as well as at outcrops adjacent to the borehole site. The Nojima Fault plane was drilled at a depth of 389.4 m (borehole apparent depth). Fission-track lengths in zircons from localities > 60 m distance from the fault plane, as well as those from outcrops, are characterized by the mean values of ≈10–11 μm and unimodal distributions with positive skewness, which show no signs of an appreciable reduction in FT length. In contrast, those from nearby the fault at depths show significantly reduced mean track lengths of ≈6–8 μm and distributions having a peak around 6–7 μm with rather negative skewness. In conjunction with other geological constraints, these results are best interpreted by a recent thermal anomaly around the fault, which is attributable to heat transfer via focused fluids from the deep interior of the crust and/or heat dispersion via fluids associated with frictional heating by fault motion.  相似文献   

5.
The North Anatolian fault zone that ruptured during the mainshock of theM 7.4 Kocaeli (Izmit) earthquake of 17 August 1999 has beenmonitored using S wave splitting, in order to test a hypothesisproposed by Tadokoro et al. (1999). This idea is based on the observationof the M 7.2 1995 Hyogo-ken Nanbu (Kobe) earthquake, Japan.After the Hyogo-ken Nanbu earthquake, a temporal change was detectedin the direction of faster shear wave polarization in 2–3 years after the mainshock (Tadokoro, 1999). Four seismic stations were installed within andnear the fault zone at Kizanlik where the fault offset was 1.5 m, about80 km to the east of the epicenter of the Kocaeli earthquake. Theobservation period was from August 30 to October 27, 1999. Preliminaryresult shows that the average directions of faster shear wave polarization attwo stations were roughly parallel to the fault strike. We expect that thedirection of faster shear wave polarization will change to the same directionas the regional tectonic stress reflecting fault healing process. We havealready carried out a repeated aftershock observation at the same site in2000 for monitoring the fault healing process.  相似文献   

6.
Abstract A multi-offset hydrophone vertical seismic profiling (VSP) experiment was done in a 747 m deep borehole at Nojima Hirabayashi, Hyogo prefecture, Japan. The borehole was drilled to penetrate the Nojima Fault, which was active in the 1995 Hyogo-ken Nanbu earthquake. The purpose of the hydrophone VSP is to detect subsurface permeable fractures and permeable zones and, in the present case, to estimate the permeability of the Nojima Fault. The analysis was based on a model by which tube waves are generated when incident P-waves compress the permeable fractures (or permeable zones) intersecting the borehole and a fluid in the fracture is injected into the borehole. Permeable fractures (or permeable zones) are detected at the depths of tube wave generation, and fracture permeability is calculated from the amplitude ratio of tube wave to incident P-wave. Several generations of tube waves were detected from the VSP sections. Distinct tube waves were generated at depths of the fault zone that are characterized by altered and deformed granodiorite with a fault gouge, suggesting that permeable fractures and permeable zones exist in the fault zone. Tube wave analysis shows that the permeability of the fault gouge from 624 m to 625 m is estimated to be approximately 2 × 10−12 m2.  相似文献   

7.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   

8.
The linear and non-linear responses of surface soil layers have been predicted through the simultaneous simulation test against the observed ground motions at the six sites in Kobe City during the 1995 Hyogo-ken Nanbu earthquake. The total stress analysis method and the effective stress analysis method have been applied for the rough and detailed verification of the predicted non-linear dynamic behavior at the PIS and RKI sites including the liquefaction phenomenon. The shear strain distribution along depth, the ratio of excess pore water pressure to initial effective stress, the liquefaction strength parameters to initial effective stress, and the stress–strain curve during the earthquake at the PIS site have been investigated when the predicted ground motion could simulate successfully the observed acceleration time histories and response spectra in the non-linear range.  相似文献   

9.
Abstract An 800 m borehole was drilled near the Nojima Fault, on which a strike–slip larger then 1 m occurred during the 1995 Hyogo-ken Nanbu earthquake ( M = 7.2). Crustal activity near the fault has been observed since May 1996 using a multicomponent instrument installed at the bottom of the borehole. Data of three components of strain, two components of tilt and temperature observed from May 1996 to December 1998 were analyzed. Long-term changes of strain and tilt show a north-east–south-west extension and southwards subsidence. As for the Earth tides and atmospheric effect, orientation of the principal axis of strain was mainly east-west and orientation of the maximum subsidence was mainly north-south. The observational data of strain had variations corresponding to a change in temperature at a depth of 800 m. The thermal expansion coefficient of the crust was calculated to be approximately 2.0 × 10−6/°K.  相似文献   

10.
Abstract The internal structures of the Nojima Fault, south-west Japan, are examined from mesoscopic observations of continuous core samples from the Hirabayashi Geological Survey of Japan (GSJ) drilling. The drilling penetrated the central part of the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake) ( M 7.2). It intersected a 0.3 m-thick layer of fault gouge, which is presumed to constitute the fault core (defined as a narrow zone of extremely concentrated deformation) of the Nojima Fault Zone. The rocks obtained from the Hirabayashi GSJ drilling were divided into five types based on the intensities of deformation and alteration: host rock, weakly deformed and altered granodiorite, fault breccia, cataclasite, and fault gouge. Weakly deformed and altered granodiorite is distributed widely in the fault zone. Fault breccia appears mostly just above the fault core. Cataclasite is distributed mainly in a narrow (≈1 m wide) zone in between the fault core and a smaller gouge zone encountered lower down from the drilling. Fault gouge in the fault core is divided into three types based on their color and textures. From their cross-cutting relationships and vein development, the lowest fault gouge in the fault core is judged to be newer than the other two. The fault zone characterized by the deformation and alteration is assumed to be deeper than 426.2 m and its net thickness is > 46.5 m. The fault rocks in the hanging wall (above the fault core) are deformed and altered more intensely than those in the footwall (below the fault core). Furthermore, the intensities of deformation and alteration increase progressively towards the fault core in the hanging wall, but not in the footwall. The difference in the fault rock distribution between the hanging wall and the footwall might be related to the offset of the Nojima Fault and/or the asymmetrical ground motion during earthquakes.  相似文献   

11.
Abstract Distinctive fault ruptures, the Nojima Fault and Ogura Fault, appeared along the northwestern coast of Awaji Island at the time of the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). In order to delineate the shallow resistivity structures around the faults just after they formed, Very Low Frequency Magnetotelluric (VLF-MT) surveys were made at five sites along the Nojima Fault and at one site along the Ogura Fault. Fourteen transects were made at the one site on the Ogura Fault, and another transect covers the area between the two faults. Changes in apparent resistivity or phase, or both, commonly occur when crossing the surface location of one of the faults, except for the northern transects at OGR-0 on the Ogura Fault. Apparent resistivity values of less than 100 Ωm were observed for Tertiary and Quaternary sediments and values larger than 200 Ωm for granitic rocks. The resistivity structures are related to the morphological characteristics of the fault ruptures. Remarkably conductive zones (less than 10 Ωm in apparent resistivity and 30–40 m in width) were found where the surface displacement is distinct and prominent along a single fault plane. If remarkably conductive zones were formed at the time of the 1995 Hyogo-ken Nanbu earthquake, the results provide a good constraint on the dimensions of a conductive zone near the surface that was made by one earthquake. Alternatively, if characteristic resistivity structures existed prior to the earthquake, the conductive zone was probably formed by some tens of earthquakes in relatively modern times. In this case, this phenomenon is inferred to be a concentration of fracturing in a narrow zone and is associated with the formation of clay minerals, which enhance rock conductivity.  相似文献   

12.
The 1995 Hyogo-ken Nanbu (Kobe) earthquake brought about enormous damage to structures in the Hanshin and Awaji areas. In this paper the importance of investigating the relationship between ground motion and structural damage is pointed out.

Strong seismic motion was observed at the NTT (Nippon Telegraph and Telephone) Building during this earthquake. The structural damage to this building was relatively slight. In order to evaluate the relationship between ground motion and structural damage, it is necessary to assess the effects of the soil–structure interaction. In this study, the seismic response of the building and of the surface soil were evaluated by means of a nonlinear soil–structure interaction analysis using FEM.

It was found that, the nonlinearity of surface soil near the building had a great effect on the soil–structure interaction, especially the rocking of the building.  相似文献   


13.
Abstract Drilling was carried out to penetrate the Nojima Fault where the surface rupture occurred associated with the 1995 Hyogo-ken Nanbu earthquake. Two 500 m boreholes were successfully drilled through the fault zone at a depth of 389.4 m. The drilling data show that the relative uplift of the south-east side of the Nojima Fault (south-west segment) was approximately 230 m. The Nojima branch fault, which branches from the Nojima Fault, is inferred to extend to the Asano Fault. From the structural contour map of basal unconformity of the Kobe Group, the vertical component of displacement of the Nojima branch–Asano Fault is estimated to be 260–310 m. Because the vertical component of displacement on the Nojima Fault of the north-east segment is a total of those of the Nojima Fault of the south-west segment and of the Nojima branch–Asano Fault, it is estimated to total to 490–540 m. From this, the average vertical component of the slip rate on the Nojima Fault is estimated to be 0.4–0.45 m/103 years for the past 1.2 million years.  相似文献   

14.
The 17 August 1999 Kocaeli earthquake in Turkey produced a majorsurface rupture. We traced this surface rupture from Gölcük toDüzce and located it accurately by using GPS. The closest distancefrom the surface rupture to the strong motion observation sites weredetermined. Then the attenuation characteristics of the observed peakground acceleration were compared with the attenuation relation given byFukushima and Tanaka (1992), which is suitable for the near-fault zone inJapan and gives results that closely match data recorded during the 1995Hyogo-ken Nanbu earthquake in Japan. Although this attenuation relationwas developed for Japan, we found that it agreed well with the KOCAELIearthquake. Furthermore, the observed spectral acceleration of 5%damping was compared with the building design code of Turkey and theobserved level was lower than the code.  相似文献   

15.
Abstract Crack-filling clays and weathered cracks were observed in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m cores drilled from the Nojima Fault Zone, which was activated during the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). The crack-filling clays consist mainly of unconsolidated fine-grained materials that fill opening cracks with no shear textures. Most of the cracks observed in the DPRI 1800 m cores are yellow-brown to brown in color due to weathering. Powder X-ray diffraction analyses show that the crack-filling clays are composed mainly of clay minerals and carbonates such as siderite and calcite. Given that the top of the borehole is approximately 45 m above sea level, most of the core is far below the stable groundwater table. Hence, it is suggested that the crack-filling clays and weathered cracks in the cores taken at depths of 1800 m were formed by the flow of surface water down to the deep fractured zone of the Nojima Fault Zone during seismic faulting.  相似文献   

16.
Masataka Ando 《Island Arc》2001,10(3-4):206-214
Abstract The Nojima Fault Zone Probe was designed to study the properties and recovery processes of the Nojima Fault, which moved during the Hyogo-ken Nanbu earthquake ( M JMA7.2) of 1995. Three holes, 500 m, 800 m and 1800 m deep, were drilled into or near the fault zone by the Disaster Prevention Research Institute, Kyoto University. The 500 m and 800 m holes were drilled in November 1995, and in December 1996 the last hole reached its final depth of 1760 m. The significant results are: (i) Geological and geophysical reconstruction of the structure and evolution of the Nojima Fault was obtained; (ii) the maximum compression axis was found to be perpendicular to the fault, approximately 45° to the regional compression stress axis; (iii) micro-earthquakes (m = –2 to +1) were induced by water injections 1–3 km from the injection points in the 1800 m hole; (iv) the fault zone was measured to be 30 m wide from microscopic studies of core samples. Instruments such as three-component seismometers, crustal deformation instruments, and thermometers were installed in the holes.  相似文献   

17.
毕金孟  蒋长胜 《地球物理学报》2019,62(11):4300-4312
为系统地考察华北地区地震序列参数的分布特征,以期构建适合区域地震活动特征的短期概率预测模型和评估地震危险性,本文利用当前较为前沿的ETAS模型和R-J模型,采用连续滑动、多时段拟合的方式,对华北地区1970年以来的16个地震序列进行了参数拟合,并对参数的整体情况、参数之间的关系、参数与大地热流之间的关系等特征进行了分析研究.研究结果表明,主震发生后的早期阶段,地震序列参数变化相对较为剧烈,误差也较大;两种地震预测模型的序列参数呈现出一种优势分布特征,主要参数的平均值分别为αETAS=1.7404±0.3420,pETAS=0.9769±0.1396,aOML=-1.6638±0.5284,bOML=0.8312±0.1658,pOML=0.9053±0.1527,这与国际上其他区域的研究具有很强的一致性;大多数情况下,ETAS模型参数pETAS高于R-J模型参数pOML,平均偏高0.0716;序列参数αETAS与大地热流值整体上呈现一种负相关关系,激发次级余震的能力与大地热流具有一定的相关性.地震序列参数的分布特征以及与大地热流之间的关系对地震序列类型的判断,及基于地震序列参数构建定量化的短期概率预测模型,均有重要的应用价值.  相似文献   

18.
Abstract The 1995 Kobe (Hyogo-ken Nanbu) earthquake (MJMA 7.2, Mw 6.9) occurred on Jan. 17, 1995, at a depth of 17 km, beneath the areas of southern part of Hyogo prefecture and Awaji Island. To investigate P-wave velocity distribution and seismological characteristics in the aftershock area of this great earthquake, a wide-angle and refraction seismic exploration was carried out by the Research Group for Explosion Seismology (RGES) . The profile including 6 shot points and 205 observations was 135 km in length, extending from Keihoku, Northern Kyoto prefecture, through Kobe, to Seidan on Awaji Island. The charge of each shot was 350–700 kg. The P-wave velocity structure model showed a complicated sedimentary layer which is shallower than 2.5 km, a 2.5 km-thick basement layer whose velocity is 5.5 km/s, overlying the crystalline upper crust, and the boundary between the upper and lower crust.
Almost all aftershock hypocenters were located in the upper crust. However, the structure model suggests that the hypocenters of the main shock and some aftershock clusters were situated deeper than the boundary between the upper and lower crust. We found that the P-velocity in the upper crust beneath the northern part of Awaji Island is 5.64 km/s which is 3% lower than that of the surrounding area. The low-velocity zone coincides with the region where the high stress moment release was observed.  相似文献   

19.
In situ stress measurements in a borehole close to the Nojima Fault   总被引:1,自引:0,他引:1  
Abstract In situ stress was measured close to the fault associated with the 1995 Kobe Earthquake (Hyogo-ken Nanbu earthquake; January 1995; M 7.2) using the hydraulic fracturing method. The measurements were made approximately 2 years after the earthquake. The measured points were approximately 40 m from the fault plane at depths of about 1500 m. The maximum and the minimum horizontal compressive stresses were 45 MPa and 31 MPa, respectively. The maximum compressive stress and the maximum shear stress are very small in comparison with those of other seismically active areas. The azimuth of the maximum horizontal compressive stress was estimated from the observed azimuths of well bore breakouts at depths between 1400 m and 1600 m and was found to be N135° (clockwise). The maximum stress axis is perpendicular to the fault strike, N45°. These features are interpreted in terms of a small frictional coefficient of the fault. The shear stress on the fault was released and dropped almost to zero during the earthquake and it has not yet recovered. Zero shear stress on the fault plane resulted from the perpendicular orientation of one of the principal stress to the fault plane.  相似文献   

20.
一些强地震前地表可产生热异常是人们比较一致的认识,但能否用卫星遥感技术观测到地下热异常则存在很大的分歧.本文试图通过分析热红外亮温与大地热流值的关系,探讨利用卫星遥感技术观测地震热异常的可能性及其存在的一些问题.研究结果表明:(1)在绝大多数情况下,亮温随大地热流值的升高而升高,升高的速率平均为0.057℃/mW·m-2.如果地震引起的大地热流异常为100 mW·m-2,则有可能产生卫星红外平均亮温约5.7℃的异常.(2)不同地区亮温随大地热流值变化速率不同,即使地震前出现了卫星热红外亮温异常,但不同地区表现也是不同的.(3)在一些地区一些季节,亮温与大地热流值关系不明显,可能是亮温数据受气象因素干扰所致.这说明地震前的热红外亮温异常是复杂的,甚至有时是难于观测到的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号