首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用瞬态光电压技术研究了NPB和Alq3界面激子拆分过程和拆分机理.对NPB和Alq3组成双层结构的样品,在脉冲355nm激光照射下,测量样品的瞬态光电压信号,通过对不同结构的和有界面激子阻挡层的样品的瞬态光电压分析,并排除了ITO/有机外界面对激子拆分的影响,得出了NPB/ Alq3界面激子拆分机理是向Alq3 注入电子,向NPB注入空穴.  相似文献   

2.
In this work, enhanced poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction photovoltaic devices are achieved via slow-solvent-vapour treatment. The correlations between the morphology of the active layer and the photovoltaic performance of polymer-based solar cell are investigated. The active layers are characterized by atomic force microscopy and optical absorption. The results show that slow-solvent-vapour treatment can induce P3HT self-organization into an ordered structure, leading to the enhanced absorption and efficient charge transport.  相似文献   

3.
This paper reports that stoichiometric, amorphous, and uniform Er2O3 films are deposited on Si(001) substrates by a radio frequency magnetron sputtering technique. Ellipsometry measurements show that the refractive index of the Er2O3 films is very close to that of a single layer antireflection coating for a solar cell with an air surrounding medium during its working wavelength. For the 90-nm-thick film, the reflectance has a minimum lower than 3% at the wavelength of 600 nm and the weighted average reflectances (400--1000 nm) is 11.6%. The obtained characteristics indicate that Er2O3 films could be a promising candidate for antireflection coatings in solar cells.  相似文献   

4.
This paper investigates the properties of thickness extension mode excited by lateral electric field on LiNbO3 by using the extended Christoffel--Bechmann method. It finds that the lateral field excitation coupling factor for a-mode (quasi-extensional mode) reaches its maximum value of 28% on X-cut LiNbO3. The characteristics of a lateral field excitation device made of X-cut LiNbO3 have been investigated and the lateral field excitation device is used for the design of a high frequency ultrasonic transducer. The time and frequency domain pulse/echo response of the LiNbO3 lateral field excitation ultrasonic transducer is analysed with the modified Krimholtz--Leedom--Matthae model and tested using traditional pulse/echo method. A LiNbO3 lateral field excitation ultrasonic transducer with the centre frequency of 33.44 MHz and the --6 dB bandwidth of 33.8% is acquired, which is in good agreement with the results of the Krimholtz--Leedom--Matthae model. Further analysis suggests that the LiNbO3 lateral field excitation device has great potential in the design of broadband high frequency ultrasonic transducers.  相似文献   

5.
The TiO2--Mn--TiO2 multilayers are successfully grown on glass and silicon substrates by alternately using radio frequency reactive magnetron sputtering and direct current magnetron sputtering. The structures and the magnetic behaviours of these films are characterised with x-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer, and superconducting quantum interference device (SQUID). It is shown that the multi-film consists of a mixture of anatase and rutile TiO2 with an embedded Mn nano-film. It is found that there are two turning points from ferromagnetic phase to antiferromagnetic phase. One is at 42 K attributed to interface coupling between ferromagnetic Mn3O4 and antiferromagnetic Mn2O3, and the other is at 97 K owing to the interface coupling between ferromagnetic Mn and antiferromagnetic MnO. The samples are shown to have ferromagnetic behaviours at room temperature from hysteresis in the M--H loops, and their ferromagnetism is found to vary with the thickness of Mn nano-film. Moreover, the Mn nano-film has a critical thickness of about 18.5 nm, which makes the coercivity of the multi-film reach a maximum of about 3.965times 10 - 2 T.  相似文献   

6.
在PIN型光探测器的基础上制备了一种适用于波分复用系统的具有平顶陡边响应的长波长光探测器。利用低压金属有机化学气相沉积(LP-MOCVD)设备在GaAs衬底上二次外延生长了具有台阶结构的GaAs/AlGaAs滤波腔和InP基PIN光探测器。高质量的GaAs/InP异质外延采用了低温缓冲层生长工艺;具有台阶结构的Fabry-Pérot(F-P)滤波腔采用了纳米量级台阶的制备方法。通过理论计算优化了实现平顶陡边光谱响应特性的器件结构;并通过实验成功制备出了具有平顶陡边响应性能的光探测器,器件的工作波长位于1 549nm,峰值量子效率大于25%,0.5dB光谱响应线宽为3.9nm,3dB光谱响应线宽为4.2nm,响应速率达到17GHz。  相似文献   

7.
The generalised gradient approximation based on density functional theory is used to study the structural and electronic properties of the endohedral fullerene dimer (N2@C60)2. Four N atoms sit at the cage centres in the form of two N_2 molecules. The density of states and Mulliken charge analysis explore that the energy levels from -6 to -10 eV are mainly influenced by the N2 molecules.  相似文献   

8.
本实验以新月菱形藻为受试生物,研究了低浓度不同粒径TiO2颗粒(21nm、60nm和400nm)对海洋微藻生长、抗氧化酶活性(超氧化物歧化酶SOD、过氧化氢酶CAT和过氧化物酶POD)、脂质过氧化产物(MDA)含量的影响,并测定了相应的活性氧自由基(ROS)的含量,初步探讨了TiO2颗粒对海洋微藻的作用机制。结果表明,1mg/L TiO2颗粒对新月菱形藻生长的抑制作用随着粒径的减小而逐渐增强,第48h、72h、96h呈现出显著的纳米效应。TiO2颗粒可以诱导藻细胞内ROS的含量增加,对藻细胞产生氧化胁迫,新月菱形藻的抗氧化酶活性发生应激响应,以清除过量的ROS,但剩余的ROS对藻细胞产生氧化损伤,导致MDA含量升高,并且纳米级TiO2颗粒对新月菱形藻的氧化损伤大于微米级颗粒。在不同粒径TiO2颗粒的胁迫下,藻细胞SOD和CAT活性的响应也存在差异。本研究将为开展人工纳米材料对海洋生态系统影响的潜在风险评估提供科学依据。  相似文献   

9.
The spectral aerosol-extinction coefficients (SAECs) obtained from SAGE III measurements are used to study the physical and integral microphysical characteristics of polar stratospheric clouds (PSCs). Different criteria for PSC identification from SAEC measurements are considered and analyzed based on model and field measurements. An intercomparison of them is performed, and the agreement and difference of the results obtained with the use of different criteria are shown. A new criterion is proposed for PSC identification, which is based on the estimate of how close the measured vector of the spectral attenuation coefficient is to a model distribution of the PSC ensemble. On the basis of different criteria, cases of PSCs are isolated from all SAGE III observations (over 30000). All selection criteria lead to a qualitatively and quantitatively similar space-time distribution of the regions of PSC localization. The PSCs observed in the region accessible to SAGE III measurements are localized in the latitudinal zones 65°–80° in the Northern Hemisphere and 45°–60° in the Southern Hemisphere during the winter-spring period. In the Northern Hemisphere, PSCs are observed within the longitudinal zone 120° W–100° E with the maximum frequency of PSC observation in the vicinity of the Greenwich meridian. In the Southern Hemisphere, the region of PSC observation is almost the same in longitude but with a certain shift in the maximum frequency of PSC observation to the west. This maximum is observed in the vicinity of 40°W, and the region of usual PSC observation is the neighborhood of 60° of the maximum’s longitude. The physical parameters of PSCs are estimated: the mean heights of the lower and upper boundaries of PSCs are 19.5 and 21.9 km, respectively, and the mean cloud temperature is 191.8 K. The integral microphysical parameters of PSCs are estimated: the total surface of NAT particles S NAT = 0.41 μm2/cm3; the total volume of NAT particles V NAT = 1.1 μm3/cm3; and, for all aerosol and cloud particles together, S is 2.9 ± 1.5 at a standard deviation of 2.7 μm2/cm3 and V is 2.8 ± 1.5 at a standard deviation of 4.2 μm3/cm3. A high frequency of PSC occurrence and high values of S and V in PSCs both for all particles and for NAT particles have been noted in January–February 2005 as compared to the rest of the period of SAGE III measurements for 2002–2005.  相似文献   

10.
The partial pressure of carbon dioxide (pCO2) in estuary-plume systems is related to the internal processes of net organic metabolism and physical mixing, but is also strongly influenced by biogeochemical inputs from the land and ocean. Surface layer pCO2, stimulated fluorescence of chlorophyll (f-chl) and colored organic matter (f-com), and beam attenuation at 660 nm (c-660) were measured during three seasonal surveys of the Kennebec (ME) and Merrimack (MA) estuary-plume systems. These estuaries are both supplied by large New England Rivers and separated by less than 150 km, but significant differences were often observed in the distributions of surface pCO2 and optical variables. High pCO2 concentrations were generally associated with high f-com, while lower pCO2 concentrations were associated with high f-chl and c-660. Using simple regression models, optical measurements were used to estimate chlorophyll and total organic carbon concentrations. Results suggest that labile riverine carbon is responsible for sustaining supersaturated pCO2 conditions and that phytoplankton productivity, likely driven by inputs of riverine dissolved inorganic nitrogen, is responsible for pCO2 undersaturation. Although optical variables are often related to surface pCO2, the results suggest that efforts to retrieve pCO2 in complex waters using optical data may be enhanced using a site-specific, multivariate approach.  相似文献   

11.
12.
Geometry and vibrational frequencies of the ground state of Si2O2 molecule are studied using density function theory (DFT) at the level of cc-pvtz and 6-311++G**. It is found that the optimizing value by B3lyp/cc-pvtz is closer to the experimental data. The excited properties under different external electric fields are also investigated by the time-dependent-DFT method. Transitions from the ground state of Si2O2 molecule to the first singlet state under different external electric fields can take place more easily. The corresponding absorption spectral line is about 360 nm in wavelength and the excitation energy is about 3.4 eV.  相似文献   

13.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   

14.
The dissolved inorganic carbon (DIC) and related chemical species have been measured from 1992 to 2001 at Station KNOT (44°N, 155°E) in the western North Pacific subpolar region. DIC (1.3∼2.3 µ mol/kg/yr) and apparent oxygen utilization (AOU, 0.7∼1.8 µmol/kg/yr) have increased while total alkalinity remained constant in the intermediate water (26.9∼27.3σθ). The increases of DIC in the upper intermediate water (26.9∼27.1σθ) were higher than those in the lower one (27.2∼ 27.3σθ). The temporal change of DIC would be controlled by the increase of anthropogenic CO2, the decomposition of organic matter and the non-anthropogenic CO2 absorbed at the region of intermediate water formation. We estimated the increase of anthropogenic CO2 to be only 0.5∼0.7 µmol/kg/yr under equilibrium with the atmospheric CO2 content. The effect of decomposition was estimated to be 0.8 ± 0.7 µmol/kg/yr from AOU increase. The remainder of non-anthropogenic CO2 had increased by 0.6 ± 1.1 µmol/kg/yr. We suggest that the non-anthropogenic CO2 increase is controlled by the accumulation of CO2 liberated back to atmosphere at the region of intermediate water formation due to the decrease of difference between DIC in the winter mixed layer and DIC under equilibrium with the atmospheric CO2 content, and the reduction of diapycnal vertical water exchange between mixed layer and pycnocline waters. In future, more accurate and longer time series data will be required to confirm our results.  相似文献   

15.
The carbon to nitrogen (C:N) stoichiometry of phytoplankton production varied significantly during the spring–summer bloom in the North Water Polynya (NOW), from April through July 1998. The molar ratio of particulate organic carbon (POC) to nitrogen (PON) production by phytoplankton (ΔPOC:ΔPON) increased from 5.8 during April through early June to 8.9 in late June and July. The molar dissolved inorganic carbon (DIC) to nitrate+nitrite (NO3) drawdown ratio (ΔDIC: ΔNO3) increased from 6.7 in April and May, to 11.9 in June (no estimate for July because of ice melting). The discrepancy between ΔPOC:ΔPON and ΔDIC:ΔNO3 was likely due to dissolved organic carbon (DOC) production. Increased ΔPOC:ΔPON of phytoplankton and surface water ΔDIC:ΔNO3 throughout the phytoplankton blooms resulted from changes in physical properties of the upper water column, such as reduced thickness of the surface mixed layer that exposed phytoplankton to increased photosynthetically available radiation (PAR), accompanied by NO3 depletion. This is expected to have significant effects on the cycling of carbon (C) and nitrogen (N) in pelagic ecosystems, as the increased C:N ratio of organic matter decreases its quality as substrate for grazers and microbial communities. Based on ΔPOC:ΔPON, the ratio of POC to chlorophyll a (Chl) production (ΔPOC:ΔChl) and the relationship between Chl yields and NO3 depletion, we estimate that 71±17% and 46±20% of the depleted NO3 went to PON production in the euphotic zone over the polynya from April to early June, and late June to July, respectively. The remaining NO3 was likely channelled to dissolved organic nitrogen (DON) and heterotrophic bacteria, which were not returned to the dissolved inorganic nitrogen (DIN) pool through recycling during the course of the study. Hence, the autotrophic production of organic N and its recycling by the microbial food web were not coupled temporally.  相似文献   

16.
Distributions and characteristics of water mass and chlorofluorocarbons (CFCs) in the North Pacific are investigated by using a General Circulation Model (GCM). The anthropogenic CO2 uptake by the ocean is estimated with velocity fields derived from the GCM experiments. The sensitivity of the uptake to different diffusion parameterizations and different surface forcing used in the GCM is investigated by conducting the three GCM experiments; the diffusive processes are parameterized by horizontal and vertical eddy diffusion which is used in many previous models (RUN1), parameterized by isopycnal diffusion (RUN2), and isopycnal diffusion and perpetual winter forcing for surface temperature and salinity (RUN3). Realistic features for water masses and CFCs can be simulated by the isopycnal diffusion models. The horizontal and vertical diffusion model fails to simulate the salinity minimum and realistic penetration of CFCs into the ocean. The depth of the salinity minimum layer is better simulated under the winter forcing. The results suggest that both isopycnal parameterization and winter forcing are crucial for the model water masses and CFCs simulations. The oceanic uptake of anthropogenic CO2 in RUN3 is about 19.8 GtC in 1990, which is larger by about 10% than that in RUN1 with horizontal and vertical diffusive parameterization. RUN3 well simulates the realistic water mass structure of the intermediate layer considered as a candidate of oceanic sink for anthropogenic CO2. The results suggest that the previous models with horizontal and vertical diffusive parameterization may give the oceanic uptake of anthropogenic CO2 underestimated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
An experiment was performed to determine the effect of injected CO2 on the deep-sea (3200 m) meiofaunal community in the Monterey Canyon. Approximately 20 L of liquid CO2 was added to each of three cylindrical corrals (PVC rings pushed into the seabed) that were arranged in a triangular array 10 m on a side. After a 30-day period, sediment cores were collected within an area exposed to the dissolution plume emanating from the CO2 pools and from a reference site approximately 40 m away; cores were also collected from within two of the CO2 corrals. Sediment cores were sectioned into 0–5, 5–10, and 10–20 mm layers. Abundances of major groups (harpacticoid copepods, nematodes, nauplii, kinorhynchs, polychaetes, and total meiofauna) were determined for each layer. CO2 exposure did not significantly influence the abundances or vertical distributions of any of the major taxa. However, other evidence suggests that abundance alone did not accurately reflect the effect of CO2 on meiofauna. We argue that slow decomposition rates of meiofaunal carcasses can mask adverse effects of CO2 and that longer experiments and/or careful examination of meiofaunal condition are needed to accurately evaluate CO2 effects on deep-sea meiofaunal communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Calibration of a chalcogenide glass membrane, Fe(III)ISE [Fe2.5(Ge28Sb12Se60)97.5], in buffered saline media has been undertaken in order to assess the suitability of this ISE for seawater analyses. The electrode slopes in saline citrate and salicylate buffers were 26.3 and 28.2 mV/decade, respectively, for Fe3+ concentrations ranging from 10−10 M to less than 10−25 M Fe3+. The calibration lines in the citrate and salicylate buffers were essentially collinear with the response in unbuffered chloride-free standards containing >10−5 M Fe3+, demonstrating that the response of the FeISE is unaffected by chloride ions. A mechanism involving a combination of charge transfer and ion-exchange of Fe(III), at the electrode diffusion layer, can be used to explain the ≈30 mV/decade slope of the FeISE. The response of the FeISE in UV photooxidised seawater containing 8 nM total Fe was measured as the pH was changed from 8.27 to 3.51. The slope of the response was 24.2 mV/decade [Fe3+] calculated as a function of pH using Fe(III) hydrolysis constants for seawater. Moreover, the response was essentially collinear with that in citrate buffers and in unbuffered solutions containing >10−5 M Fe3+ and the slope for the combined data was 26.2 mV/decade. This study was restricted to organic-free seawater because the certainty in Fe(III)–ligand stability constants is insufficient to warrant the selection of an ideal calibration buffer system, and there is evidence that powerful chelating ligands (e.g., EDTA along with humic and fulvic acids) may alter the response of the Fe(III)ISE. The Fe dissolution rate of the FeISE in UV photooxidised seawater was found to be 1.6×10−2 nmol Fe/min, as measured by cathodic stripping voltammetry (CSV). This would contaminate a 100-ml sample by 0.8–1.6 nM Fe over a typical measurement period of 5–10 min obtained using a stability criterion of 0.5 mV/min. Various methods are proposed for reducing the level of contamination in open ocean samples that contain sub-nanomolar concentrations of iron. The FeISE has the potential to detect free Fe3+ at concentrations typically found in natural seawater.  相似文献   

19.
The concentration level of cadmium (Cd) and the regeneration related to phosphate (PO4) were examined at two stations (CM10, CM12) in the eastern Japan Basin in July 1998. The observed Cd concentrations were around 0.2–0.3 nM and 0.5–0.6 nM in the surface and deep layers (Japan Sea Proper Water; JSPW), respectively; the concentration of Cd in the JSPW was much lower than that in the Pacific deep water, which is attributed to its specific formation system (which driven by the winter convection of the surface layer within the Japan Sea, thereafter descending to the deep layer) connected with the relatively active vertical mixing in the Japan Sea. A plot of Cd against PO4 showed good linearity with positive y-intercept values, suggesting that the excess Cd was apparently not available in the biogeochemical cycle. The molecular ratios of consumed O2 to regenerated Cd and PO4 in the JSPW were 688,000, 140 and 881,000, 146 for CM10 and CM12, respectively, and a lower preformed Cd concentration (around 0.37 nM) was also estimated in the JSPW, different from that of the North Pacific deep water (613,000 for Cd, 170 for PO4, and 0.64 nM of preformed Cd).  相似文献   

20.
Like most other deep basins in Southeast Asia, the deep Sulu Sea (SS) basin is isolated from the neighboring seas by surrounding topography. While the near-surface circulation is mainly governed by the seasonally reversing monsoon winds, below the warm and fresh surface layer, the core of the incoming Subtropical Lower Water from the West Philippine Sea (WPS), by way of the South China Sea (SCS), can be seen, at a depth of around 200 m, to have a distinct salinity maximum. It lies well above the sill depth (420 m) in the Mindoro Strait and thus, its spreading is not hampered by topography. The deep circulation is forced by an inflow of upper North Pacific Intermediate Water (NPIW) from the SCS through the Mindoro Str. Below 1000 m, the physico-chemical properties are remarkably homogeneous. The higher temperature, but lower salinity, oxygen and nutrients, of the deep SS waters, compared to those of the SCS, is indicative of the intrusion of NPIW above the sill depth. The excess, anthropogenic CO2 penetrates the entire water column, because of the over-spill of the excess CO2-laden water from the SCS.It has been reported that the bottom of the SS is CaCO3 rich, relative to the SCS. Previous investigators attribute this to the higher θ in the SS. Indeed, the aragonite does not become undersaturated in the SS until below 1400 m, compared to 600 m in both the WPS and SCS; and the calcite does not become undersaturated until below 3800 m in the SS, compared to 2500 m in the SCS and around 1600 m in the WPS. However, the temperature effect is relatively small. These large differences are, in fact, largely a result of higher CO32− concentrations in the SS, relative to the WPS and SCS. The higher CO32− concentration in the SS, in turn, is mainly caused by the smaller amounts of organic carbon decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号