首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
For the first time, this paper presents to the planetary scientists' community the catalog of the meteorite collection preserved at the Italian Museum of Planetary Sciences (Museo Italiano di Scienze Planetarie, henceforth MISP) in Prato (Italy). Founded in 2005, MISP is a type specimen official repository approved by the Nomenclature Committee of the Meteoritical Society. It represents one of the few museums worldwide entirely devoted to planetary sciences. The catalog of its meteorite collection encompasses 430 meteorites for a total of 1536 specimens, including 291 thin sections, 184 thick sections, and 278 specimens that MISP has classified. Furthermore, MISP is currently classifying 57 other meteorites. Some samples were found during meteorite recovery expeditions in hot deserts, promoted by MISP in collaboration with diverse Italian universities and national research institutions. MISP also keeps an impact rocks collection comprising 257 samples. In a country like Italy, where most of the collected meteorites are housed in museums whose catalogs are not available online, the publication of the MISP meteorite collection catalog, together with the catalog of the impact rocks collection, represents not only a significant scientific primary source but also a remarkable tool for disseminating meteoritics to nonresearch audiences in educational activities and citizen science projects.  相似文献   

3.
Abstract– We describe the geological, morphological, and climatic setting of the San Juan meteorite collection area in the Central Depression of the Atacama Desert (Chile). Our recovery activities yielded 48 meteorites corresponding to a minimum of 36 different falls within a 3.88 km2 area. The recovery density is in the range 9–12 falls km?2 depending on pairing, making it the densest among meteorite collection areas in hot deserts. This high meteorite concentration is linked to the long‐standing hyperaridity of the area, the stability of the surface pebbles (> Ma), and very low erosion rates of surface pebbles (approximately 30 cm Ma?1 maximum). The San Juan meteorite population is characterized by old terrestrial ages that range from zero to beyond 40 ka, and limited weathering compared with other dense collection areas in hot desert. Chemical weathering in San Juan is slow and mainly controlled by the initial porosity of meteorites. As in the Antarctic and other hot deserts, there is an overabundance of H chondrites and a shortage of LL chondrites compared with the modern falls population, suggesting a recent (< few ka) change in the composition of the meteorite flux to Earth.  相似文献   

4.
Abstract— Studies of 52 specimens recovered from the find site of the original Travis County meteorite reveal the presence of two distinct meteorites. Travis County (a), which includes the original Travis County meteorite, is the more abundant meteorite and is classified as an H5(S4) shock-blackened chondrite. Travis County (b) is classified as an H4(S2) chondrite with rare chondritic clasts of H group parentage, indicating that the meteorite is a breccia.  相似文献   

5.
Abstract The first inventory of the meteorite collection of the Muséum d'Histoire Naturelle of Geneva is given. The collection, which was initiated early in the nineteenth century and thus is one of the oldest in the world, numbers at present 164 fragments of 102 individual meteorites including the largest fragment (22 kg) of the North Chile hexahedrite. During 1991 the collection was updated and several new specimens were acquired.  相似文献   

6.
We describe the geological, morphological, and climatic settings of two new meteorite collections from Atacama (Chile). The “El Médano collection” was recovered by systematic on‐foot search in El Médano and Caleta el Cobre dense collection areas and is composed of 213 meteorites before pairing, 142 after pairing. The “private collection” has been recovered by car by three private hunters and consists of 213 meteorites. Similar to other hot desert finds, and contrary to the falls and Antarctica finds, both collections show an overabundance of H chondrites. A recovery density can be calculated only for the El Médano collection and gives 251 and 168 meteorites larger than 10 g km?2, before and after pairing, respectively. It is by far the densest collection area described in hot deserts. The Atacama Desert is known to have been hyperarid for a long period of time and, based on cosmic‐ray exposure ages on the order of 1–10 Ma, to have been stable over a period of time of several million years. Such a high meteorite concentration might be explained invoking either a yet unclear concentration mechanism (possibly related to downslope creeping) or a previously underestimated meteorite flux in previous studies or an average terrestrial age over 2 Myr. This last hypothesis is supported by the high weathering grade of meteorites and by the common terrestrial fragmentation (with fragments scattered over a few meters) of recovered meteorites.  相似文献   

7.
Abstract— As of July 2001, 1238 Libyan meteorites have been reported. Most were found in two areas called Dar al Gani and Hamadah al Hamra. Dar al Gani is located on a plateau of marine carbonate rocks with marly components. Eight‐hundred and sixty‐nine meteorites between 6 g and 95 kg totalling 687 kg have been found here but the calculated mean recovery density is comparatively low with one meteorite on 6.5 km2. Dar al Gani is a perfect site for the recognition and preservation of meteorites. The existence of meteorites is the result of a combination of specific geological and geomorphological conditions: there is a bright‐colored, old limestone plateau (<2 Ma), under arid weather conditions over long periods of time, with rapid elimination of surface water if present and low erosion rates. The preservation of meteorites is guaranteed through the absence of quartz sand on the plateau, strongly reducing wind erosion and a basic environment emerging from the carbonate ground retards rusting of metallic meteorite components. A supposed soil cover during pluvial times has probably protected older meteorites and led to a concentration of meteorites of different periods. An evaluation of Dar al Gani meteorites suggests the existence of at least 26 strewnfields and 26 meteorite pairs reducing the number of falls to, at most, 534. Shock and weathering grades as a tool for the recognition of pairings turned out to be problematic, as several strewnfields showed paired meteorites which had been classified to different shock and weathering grades.  相似文献   

8.
One of the most productive and well‐sampled dense collection areas for meteorites on Earth is the “Franconia strewn field” in Mohave County, Arizona, which since 2002 has yielded hundreds of meteorites in an ellipsoidal area approximately 5 × 16 km across. Based on petrographic, mineral‐chemical, and terrestrial age data, we conclude that among 14 meteorites examined, there are at least 6 and possibly 8 distinct meteorites represented, which fell over a period of approximately 0–20 kyr ago. These include equilibrated H‐chondrites such as Franconia (H5) and Buck Mountains (BM) 001 (H6); H3–6 breccias such as Buck Mountains Wash and BM 004; and L6 chondrites such as BM 002 and BM 003 (which may be paired), Palo Verde Mine, and BM 005. To confidently pair such meteorites often requires thorough petrographic examination, mineral‐chemical analyses, and terrestrial ages. We estimate that 50 ± 10% of the larger specimens in this area are paired, yielding a relatively high value of approximately 2.3–2.9 distinct meteorites km?2. The meteorite flux estimated for Franconia area is higher than the flux inferred from contemporary fireball data for larger masses. We suggest that one large H3–6 meteoroid fell in the area, most likely that of Buck Mountains Wash approximately 4 kyr ago, which produced an elliptical strewn field with masses generally increasing toward one end, and which raised the meteorite productivity in the recovery area.  相似文献   

9.
The rapid recovery of meteorites mitigates the exposure of astromaterials to the terrestrial environment and subsequent contamination. Modern fireball observatories have enabled the more accurate triangulation of fireball trajectories, which has aided in the location of strewn fields, in the case of meteorite-producing events. Despite this advancement, most meteorite searches still use manual searching to locate any meteorite falls, which is often labor-intensive and has a slow coverage rate (km2 day−1). Recent work has begun exploring the application of drone technology to the recovery of meteorites; however, most of this work has focused on falls in arid environments. Our study examines the utilization of drones with thermal imaging technology to aid in the recovery of meteorites that have fallen on a snow-covered field. We created a simulated strewn field that included meteorite specimens as well as Earth rocks with similar properties (“meteowrongs”). Thermal imagery was utilized to determine whether the thermal contrast between meteorites and snow could aid in the identification of meteorites. We found that the thermal contrast was significant enough that meteorites were readily identifiable within thermal images; however, it was not significant enough to distinguish between the meteorites and the meteowrongs. The utilization of thermal imagery in conjunction with visible imagery has the potential to aid in the rapid recovery of meteorites in snow-covered landscapes.  相似文献   

10.
We report on the first meteorite search campaign in the United Arab Emirates (UAE). The geology and proximity of our search region suggest that it is the north‐western extension of the Oman meteorite fields. We found 26 ordinary chondrites, bringing the total number of official meteorites from the UAE to 28. The campaign was organized and conducted in close cooperation with the UAE government and the main masses of the meteorites remained in the country where they will become part of an exhibition. The bulk composition of five meteorite and three soil samples indicates an uptake of U, Mo, Sr, Ba, Li, and Pb from the soil into the meteorites during terrestrial weathering. Terrestrial ages determined from 14C decay of 21 meteorites range from recent falls to 24.4 ka, with two meteorites having >37 ka and approximately 39 ka, respectively. Weak correlations between weathering degree, meteorite bulk chemical composition, and terrestrial age suggest highly localized weathering conditions, possibly related to abundant occurrences of sabkhas in the search region.  相似文献   

11.
We describe the geological, geomorphological, and paleoclimatic setting of the Sahara of North Africa in particular, focused on the main meteorite dense collection areas (DCA; Morocco, Algeria, Tunisia, and Libya). We report on the outcome of several meteorite recovery field expeditions in Morocco and Tunisia since 2008, by car and by foot, that applied systematic search methods. The number of meteorites collected is 41 ordinary chondrites and one brachinite. The statistics of unpaired ordinary chondrites indicates that H chondrites are more abundant (21) than L chondrites (12), while LL chondrites are rare (2). Our meteorite density estimates for Tunisia and Morocco are in the order of magnitude of 1 met km?2. An estimate of the total maximum number of meteorites that could be recovered from the Sahara is 780,000 meteorites. We selected 23 meteorites from Aridal, Bou Kra, Bir Zar, and Tieret DCAs for 14C dating. The results show a wide range of terrestrial ages from 0.4 to more than 40 kyr with a majority of meteorites showing ages between 0.4 and 20 kyr. The weathering degree of these meteorites is ranges from minor (W1) to strong (W4). The highest weathering grades result from repeated oscillations between high and low humidity in the Sahara. However, there appears to be no correlation between weathering grade and terrestrial age of meteorites.  相似文献   

12.
Abstract— Over 4450 meteorite specimens with a total mass of 168 760 g have been found in the Gold Basin (L4) strewn field over an area of 225 km2. The meteorite is a breccia, composed only of fragments of L‐chondrite materials. The parent meteoroid had a kinetic energy equivalent to ~5 to 50 ktons when it hit the top of the atmosphere. Cosmogenic nuclide studies indicate the meteorite has a terrestrial age of 15 000 ± 600 years, corresponding to the Late Pinedale portion of the Wisconsin Glaciation. Conditions in the Gold Basin, which is now part of the Mojave Desert, were wetter and cooler at the time of the fall. Mössbauer analyses indicate the sample is 30 to 35% oxidized. This is less than that in meteorites with similar ages found in eastern New Mexico, but comparable to that found in meteorites from the Sahara and the Nullarbor Region. Oxidation is likely to have occurred soon after the fall, when exposure to precipitation was at its maximum. Four other new meteorites were also found in the Gold Basin strewn field.  相似文献   

13.
Meteorites have been found on the small Misfits Flat dry lakebed near Stagecoach, Nevada (119.382W, +39.348N). Since the first find on Sept. 22, 2013, a total of 58 stones of weathering stage W2/3 with a combined mass of 339 g have been collected in 19 visits to the area. This small (3.3 × 3.6 km) lakebed is now a newly designated dense collection area (DCA). Most meteorites were found in a small 350 × 180 m area along the north shore and most are fragments of several broken individual stones. Three of these fragments were classified as an LL4/5 of shock stage S2, now named Misfits Flat 001, one of which (stone MF33) fell 8.1 ± 1.3 ka ago based on the 14C terrestrial age, assuming it came from a 20–80 cm diameter meteoroid. In addition, a small darkly crusted meteorite MF34, now named Misfits Flat 002, was found 820 m WSW from the main mass. This meteorite is classified as an LL5 ordinary chondrite with shock stage S4/5. The meteorite is saturated in 14C at 63 dpm kg?1, suggesting it originated from the center of a 0.5 m diameter meteoroid, or deep inside a ~1.0 m meteoroid, less than 300 yr ago. Accounts exist of a fireball seen at 13:15 UT on March 2, 1895, that are consistent with the find location of Misfits Flat 002.  相似文献   

14.
Abstract– Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 × 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km?2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact‐melt breccia). Among the meteorites, the range of compositions is large: 9–32% Al2O3, 2.5–21.1% FeO, 0.3–38 μg g?1 Sm, and <1 to 22.5 ng g?1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.  相似文献   

15.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

16.
Abstract— We report the histories and classifications of poorly known meteorites from the Oscar Monnig meteorite collection. Forestburg (a), Texas, is an L4(S2) ordinary chondrite. Forestburg (b), Texas, is a shock-blackened L5(S5) ordinary chondrite containing an impact-melt clast. Davy (a), Texas, L4(S2), is represented by several highly weathered stones. Davy (b), Texas, is a single stone classified as H4(S2). Harrison Township, Kansas, (L6(S4)) was found in the vicinity of several meteorites grouped as Ladder Creek but appears distinct. We have identified the second and largest fragment of the 1814 October Gurram Konda, India, L6(S3) meteorite fall and uncovered details of its early history.  相似文献   

17.
We present for the first time a detailed report on the discovery of a new meteorite collection region in the Lut Desert, eastern–southeastern Iran, describing its geological, morphological, and climatic setting. Our search campaigns, alongside with the activity of meteorite hunters, yielded >200 meteorite finds. Here, we report on their classification, spatial distribution, and terrestrial weathering. All the collected meteorites are ordinary chondrites (OCs). The most abundant by far are the highly weathered paired H5 distributed in the northwest of Kalut area (central Lut, Kerman dense collection area). The second are well‐preserved paired L5 also found in Kalut region. A detailed study of the geochemistry and mineralogy of selected meteorites reveals significant effects of terrestrial weathering. Fe,Ni metal (hereafter simply metal) and troilite are transformed into Fe oxyhydroxides. A rather unusual type of troilite weathering to pyrite/marcasite is observed in most of the Lut Desert meteorites. Magnetic measurements and X‐ray diffractometry confirm the occurrence of terrestrial weathering products, with the dominance of maghemite, goethite, and hematite. Mobile elements, such as Li, Sr, Mo, Ba, Tl, Th, and U, are enriched with respect to fresh falls. Meanwhile, a decrease in the V, Cr, Co, Rb (and possibly Fe) due to terrestrial weathering is detectable. The total carbon and CaCO3 is higher than in samples from other hot deserts. The weathering effects observed in the Lut Desert OCs can be used as distinctive indicators to distinguish them from meteorites from other regions of the Earth. Measurements of terrestrial age (14C) show a range of 10–30 ka, which is in the range of ages reported for meteorites from other hot deserts except the Atacama Desert (Chile). Considering the high potential of the Lut Desert in meteorite preservation, systematic works should lead to the discovery of more samples giving access to interesting material for future studies.  相似文献   

18.
Abstract— Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/km2/106 years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200 000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30 000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10 000 ± 5000 years.  相似文献   

19.
A parent body of the Lovina meteorite underwent processes which yielded dentritic structures of taenite in phosphide-sulfide-metal matrix unusual for iron meteorites. Similar dendritic structures can be found also in IIE meteorites as microinclusions but are unknown in other iron meteorites. The similarity between dendritic structures in the Lovina meteorite and metal-phosphide inclusions in IIE iron meteorites implies similar processes which led to their crystallization from molten materials in chambers of various sizes. Studying physical and chemical crystallization parameters of metal-phosphide inclusions in the Elga meteorite (IIE) makes it feasible to estimate the p-T conditions required for the unique Lovina meteorite to have formed. It is shown that dendrites in the Lovina meteorite may have been crystallized from molten materials close in composition to P-FeNi and P-S-FeNi that are produced when phosphides and sulfides melt locally in metals as a result of impact events with subsequent fast cooling. The temperature of homogeneous melting is likely to have been more than 1450°C, and the starting temperature of crystallization of such molten materials is estimated to have been between 1050 and 1150°C. The cooling rate of inclusions can be estimated to be 10−3 °C s−1, based on the structural and chemical concordance between samples obtained experimentally (Chabot et al., 2000) and metal-phosphide inclusions (P-FeNi and P-S-FeNi) in the Elga meteorite. Large-sized dendrites in the Lovina meteorite imply cooling rates that are considerably less than 10−3 °C s−1.  相似文献   

20.
Abstract Research on meteorite finds, especially those from the Antarctic and from desert regions in Australia, Africa, and America, has become increasingly important, notably in studies of possible changes in the nature of the meteorite flux in the past. One important piece of information needed in the study of such meteorites is their terrestrial age which can be determined using a variety of methods, including 14C, 36Cl, and 81Kr. Natural thermoluminescence (TL) levels in meteorites can also be used as an indicator of terrestrial age. In this paper, we compare 14C-determined terrestrial ages with natural TL levels in finds from the Prairie States (central United States), a group of finds from Roosevelt County (New Mexico, USA), and a group from the Sahara Desert. We find that, in general, the natural TL data are compatible with the 14C-derived terrestrial ages using a 20 °C TL decay curve for the Prairie States and Roosevelt County and a 30 °C decay curve for the Saharan meteorites. We also present TL data for a group of meteorites from the Sahara desert which has not been studied using cosmogenic radionuclides. Within these data there are distinct terrestrial age clusters which probably reflect changes in meteorite preservation efficiency over ~ 15, 000 years in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号