首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   5篇
地球物理   1篇
地质学   3篇
天文学   12篇
  2023年   2篇
  2020年   1篇
  2019年   4篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有16条查询结果,搜索用时 61 毫秒
1.
2.
Many studies have argued for the contribution of at least three components, namely the mantle wedge, the subducted oceanic crust, and its sediment cover, to describe the geochemistry of island arc volcanics. However, isotope correlations reflecting a simple binary mixing can be observed at the scale of a single arc island or volcano. Here we investigate the possibility that these trends reflect pseudo-binary mixing relationships in a three-component system. We present a simplified, two-stage model for the systematic isotope modelling of a cogenetic suite of arc lavas. This includes metasomatism of portions of the mantle wedge by hydrous phases released from the down-going oceanic crust, and sediments, followed by progressive mixing and melting. A consequence of this model is that it leads to a two end-member mixing process from the mantle wedge, oceanic crust, and sediment components. To solve the model we reduce it to a step-by-step procedure combined with a Monte-Carlo simulation. The procedure consists of: (i) producing a large number of random values on each variable of the model; (ii) using the computed values to calculate the isotopic compositions of lavas; and (iii) comparing the obtained isotopic compositions with measured data. Applied to a new set of Sr, Nd, and Pb isotope data for volcanics (basalts, basaltic andesites, trachybasalts, and basaltic trachyandesites) from Merapi volcano (Java island, Sunda arc), the model successfully reproduces the binary mixing relationships previously documented for the medium-K and high-K lava series from this volcano, thus giving further support to the hypothesis that this distinction is inherited from the primary magmas and primarily reflects a property of the mantle source. The results allow identification of a set of numerical values for bulk partition coefficients (solid/hydrous fluid, and solid/H2O-rich melt) and variables (e.g., the mass ratio between the metasomatizing phase and the mantle wedge), which can be used for quantitative arc-lava petrogenetic calculations. They also require a direct relationship between dehydration of the slab and melting of the metasomatized mantle wedge. Finally, our evaluation shows that for isotope modelling of the Merapi lavas, the two-stage procedure is controlled more by the considered source components (mantle wedge, oceanic crust, sediments, and their derivatives) than by the various processes involved (dehydration, melting, and mixing).  相似文献   
3.
Chemical heterogeneities in the Martian mantle are believed to result from the crystallization of a magma ocean in the first 100 million years of its history. Shergottite meteorites from Mars are thought to retain a compositional record of such early differentiation and the resulting mineralogy at different depths. The coupled 176Lu–176Hf and 147Sm–143Nd isotope systematics in 9 shergottites are used here to investigate these issues. Three compositional groups in the shergottites display distinct isotope systematics. One group, commonly termed as depleted, is characterized by positive 176Hfi from + 46.2 to + 50.4 and 143Ndi from + 36.2 to + 39.1. Another, termed as enriched, has negative 176Hfi = − 16.5 to − 13.2 and 143Ndi = − 7.0 to − 6.5. The third group is intermediate between the depleted and enriched groups with positive 176Hfi = + 30.0 to + 33.4 and 143Ndi = + 16.9. Together, they describe mixing curves between 176Hf/177Hf, 143Nd/144Nd, Lu/Hf, and Sm/Nd, implying that they sample two distinct sources in the Martian mantle. All shergottites are characterized by (Sm/Nd)source < (Sm/Nd)sample, but (Lu/Hf)source > (Lu/Hf)sample. This decoupling can be explained by two successive partial melting episodes in the depleted shergottite source and localized in the Martian upper mantle. The genesis of shergottites can be modeled using non-modal equilibrium partial melting in a source initially composed of 60% olivine, 21% clinopyroxene, 9% orthopyroxene, and 10% garnet, with degrees of partial melting of 8.8% and 3.9%, respectively, for the two successive events. The enriched end-member of the shergottite mixing curve is best modeled by late-stage quenched residual melt resulting from the crystallization of a magma ocean. The depleted shergottite source may be modeled as a mixture of cumulates and residual melt, as convection in the Martian magma ocean is expected to reduce the incompatible trace element heterogeneity in the final solidified layers. Consequently, equilibrium crystallization is preferred to model the crystallization of the Martian magma ocean. The models that best explain the shergottite data are those where the magma ocean is at a depth of at least 1350 km in Mars.  相似文献   
4.
Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.  相似文献   
5.
Meteorite fusion crusts are quenched melt layers formed during meteoroid atmospheric entry, mostly preserved as coating on the meteorite surface. Antarctic ureilite Asuka (A) 09368 and H chondrites A 09004 and A 09502 exhibit well preserved thick fusion crusts, characterized by extensive olivine crystallization. As olivine is one of the major components of most meteorites and its petrologic behavior is well constrained, it can be roughly considered as representative for the bulk meteorite. Thus, in this work, the evolution of olivine in fusion crusts of the above‐listed selected samples is investigated. The different shape and chemistry of olivine crystallized in the fusion crust, both as overgrown rim on relic olivine clasts and as new crystals, suggest a general temperature and cooling rate gradient. The occurrence of reverse and oscillatory zoning in individual olivine grains within the fusion crust suggests complex redox reactions. Overall, the investigated fusion crusts exhibit a general oxidation of the relatively reduced initial material. However, evidence of local reduction is preserved. Reduction is likely triggered by the presence of carbon in the ureilite or by overheating during the atmospheric entry. Constraining these processes provides a potential analog for interpreting features observed in cosmic spherules and micrometeorites and for calibrating experiments and numerical models on the formation of fusion crusts.  相似文献   
6.
Genesis and emplacement of Vredefort Granophyre, the impact melt rock exposed on the Vredefort Dome, the erosional remnant of the central uplift of the Vredefort impact structure, South Africa, have long been debated. This debate was recently reinvigorated by the discovery that besides the previously known felsic variety of >66 wt% SiO2, a second, somewhat more mafic phase of <66 wt% SiO2 occurs along a Granophyre dike on farms Kopjeskraal and Eldorado in the northwest sector of the dome. Two hypotheses have been put forward to explain the genesis and emplacement of this second phase: (1) successive injections of impact melt into extensional fractures opened in the course of central uplift formation/crater modification, with melts of distinct compositions derived from a differentiating impact melt body in the crater, and (2) generation of the more mafic phase as a product of admixture/assimilation of a mafic country rock component, either the so-called epidiorite of possible Ventersdorp Supergroup affiliation or the Dominion Group meta-lava (DGL), to Felsic Granophyre. In the latter model, contamination with mafic country rock would have occurred during downward intrusion and stoping into and below the crater floor. The so-called Mafic Granophyre has previously only ever been sampled on a single site (Farm Kopjeskraal). In this study, samples of Granophyre occurring along the southerly extension of this dike on farm Rensburgdrif, and from a second dike on the Rietkuil property further southwest were investigated by field work, and petrographic, geochemical, and isotopic analysis. The mafic phase indeed occurs in the interior of the dike at Rensburgdrif, and also on Rietkuil. New geochemical and Sr-Nd isotope data support the hypothesis that the Mafic Granophyre composition represents a mixture between Felsic Granophyre and a mafic country rock. A 20% admixture of epidiorite or DGL to Felsic Granophyre provides an excellent match for the chemical composition of the Mafic Granophyre. The Sr-Nd isotope data indicate that this admixture likely involved the epidiorite component rather than DGL. Together with earlier Sr-Nd-Os-Se isotopic data, and other geochemical data, these results further support formation of the Mafic Granophyre by local assimilation/admixture of epidiorite to Felsic Granophyre.  相似文献   
7.
The chemical effects of terrestrial alteration, with a particular focus on lithophile trace elements, were studied for a set of H chondrites displaying various degrees of weathering from fresh falls to altered finds collected from hot deserts. According to their trace element distributions, a considerable fraction of rare earth elements (REEs), Th, and U resides within cracks observed in weathered meteorite specimens. These cracks appear to accumulate unbound REEs locally accompanied by Th and U relative to the major element abundances, especially P and Si. The deposition of Ce is observed in cracks in the case of most of the weathered samples. Trace element maps visually confirm the accumulation of these elements in such cracks, as previously inferred based on chemical leaching experiments. Because the positive Ce anomalies and unbound REE depositions in cracks occur in all weathered samples studied here while none of such features are observed in less altered samples including falls (except for altered fall sample Nuevo Mercurio), these features are interpreted to have been caused by terrestrial weathering following chemical leaching. However, the overall effects on the bulk chemical composition remain limited as the data for all Antarctic meteorites studied in this work (except for heavily weathered sample A 09516, H6) are in good agreement with published data for unaltered meteorites.  相似文献   
8.
Classification of ordinary chondrite meteorites generally implies (1) determining the chemical group by the composition in endmembers of olivine and pyroxene, and (2) identifying the petrologic group by microstructural features. The composition of olivine and pyroxene is commonly obtained by microprobe analyses or oil immersion of mineral separates. We propose Raman spectroscopy as an alternative technique to determine the endmember content of olivine and pyroxene in ordinary chondrites, by using the link between the wavelength shift of selected characteristic peaks in the spectra of olivine and pyroxene and the Mg/Fe ratio in these phases. The existing correlation curve has been recalculated from the Raman spectrum of reference minerals of known composition and further refined for the range of chondritic compositions. Although the technique is not as accurate as the microprobe for determining the composition of olivine and pyroxene, for most of the samples the chemical group can be easily determined by Raman spectroscopy. Blind tests with ordinary chondrites of different provenance, weathering, and shock stages have confirmed the potential of the method. Therefore, we suggest that a preliminary screening and the classification of most of the equilibrated ordinary chondrites can be carried out using an optical microscope equipped with a Raman spectrometer.  相似文献   
9.
El'gygytgyn (Chukotka, Arctic Russia) is a well‐preserved impact structure, mostly excavated in siliceous volcanic rocks. For this reason, the El'gygytgyn structure has been investigated in recent years and drilled in 2009 in the framework of an ICDP (International Continental Scientific Drilling Program) project. The target rocks mostly consist of rhyodacitic ignimbrites and tuffs, which make it difficult to distinguish impact melt clasts from fragments of unshocked target rock within the impact breccia. Several chemical and petrologic attempts, other than dating individual clasts, have been considered to distinguish impact melt from unshocked volcanic rock of the targets, but none has proven reliable. Here, we propose to use cathodoluminescence (imaging and spectrometry), whose intensity is inversely correlated with the degree of shock metamorphism experienced by the investigated lithology, to aid in such a distinction. Specifically, impact melt rocks display low cathodoluminescence intensity, whereas unshocked volcanic rocks from the area typically show high luminescence. This high luminescence decreases with the degree of shock experienced by the individual clasts in the impact breccia, down to almost undetectable when the groundmass is completely molten. This might apply only to El'gygytgyn, because the luminescence in volcanic rocks might be due to devitrification and recrystallization processes of the relatively old (Cretaceous) target rock with respect to the young impactites (3.58 Ma). The alteration that affects most samples from the drill core does not have a significant effect on the cathodoluminescence response. In conclusion, cathodoluminescence imaging and spectra, supported by Raman spectroscopy, potentially provide a useful tool for in situ characterization of siliceous impactites formed in volcanic target.  相似文献   
10.
A 435 kg piece of the Mont Dieu iron meteorite (MD) contains cm‐sized silicate inclusions. Based on the concentration of Ni, Ga, Ge, and Ir (8.59 ± 0.32 wt%, 25.4 ± 0.9 ppm, 61 ± 2 ppm, 7.1 ± 0.4 ppm, respectively) in the metal host, this piece can be classified as a IIE nonmagmatic iron. The silicate inclusions possess a chondritic mineralogy and relict chondrules occur throughout the inclusions. Major element analysis, oxygen isotopic analysis (Δ17O = 0.71 ± 0.02‰), and mean Fa and Fs molar contents (Fa15.7 ± 0.4 and Fs14.4 ± 0.5) indicate that MD originated as an H chondrite. Because of strong similarities with Netschaëvo IIE, MD can be classified in the most primitive subgroup of the IIE sequence. 40Ar/39Ar ages of 4536 ± 59 Ma and 4494 ± 95 Ma obtained on pyroxene and plagioclase inclusions show that MD belongs to the old (~4.5 Ga) group of IIE iron meteorites and that it has not been perturbed by any subsequent heating event following its formation. The primitive character of MD sheds light on the nature of its formation process, its thermal history, and the evolution of its parent body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号